Extensions 1→N→G→Q→1 with N=C2×C16 and Q=C10

Direct product G=N×Q with N=C2×C16 and Q=C10
dρLabelID
C22×C80320C2^2xC80320,1003

Semidirect products G=N:Q with N=C2×C16 and Q=C10
extensionφ:Q→Aut NdρLabelID
(C2×C16)⋊1C10 = C5×C22⋊C16φ: C10/C5C2 ⊆ Aut C2×C16160(C2xC16):1C10320,153
(C2×C16)⋊2C10 = C5×D4.C8φ: C10/C5C2 ⊆ Aut C2×C161602(C2xC16):2C10320,155
(C2×C16)⋊3C10 = C5×C2.D16φ: C10/C5C2 ⊆ Aut C2×C16160(C2xC16):3C10320,162
(C2×C16)⋊4C10 = C5×D8.C4φ: C10/C5C2 ⊆ Aut C2×C161602(C2xC16):4C10320,164
(C2×C16)⋊5C10 = C10×D16φ: C10/C5C2 ⊆ Aut C2×C16160(C2xC16):5C10320,1006
(C2×C16)⋊6C10 = C5×C4○D16φ: C10/C5C2 ⊆ Aut C2×C161602(C2xC16):6C10320,1009
(C2×C16)⋊7C10 = C10×SD32φ: C10/C5C2 ⊆ Aut C2×C16160(C2xC16):7C10320,1007
(C2×C16)⋊8C10 = C10×M5(2)φ: C10/C5C2 ⊆ Aut C2×C16160(C2xC16):8C10320,1004
(C2×C16)⋊9C10 = C5×D4○C16φ: C10/C5C2 ⊆ Aut C2×C161602(C2xC16):9C10320,1005

Non-split extensions G=N.Q with N=C2×C16 and Q=C10
extensionφ:Q→Aut NdρLabelID
(C2×C16).1C10 = C5×C2.Q32φ: C10/C5C2 ⊆ Aut C2×C16320(C2xC16).1C10320,163
(C2×C16).2C10 = C5×C4⋊C16φ: C10/C5C2 ⊆ Aut C2×C16320(C2xC16).2C10320,168
(C2×C16).3C10 = C5×C163C4φ: C10/C5C2 ⊆ Aut C2×C16320(C2xC16).3C10320,171
(C2×C16).4C10 = C10×Q32φ: C10/C5C2 ⊆ Aut C2×C16320(C2xC16).4C10320,1008
(C2×C16).5C10 = C5×C8.4Q8φ: C10/C5C2 ⊆ Aut C2×C161602(C2xC16).5C10320,173
(C2×C16).6C10 = C5×C164C4φ: C10/C5C2 ⊆ Aut C2×C16320(C2xC16).6C10320,172
(C2×C16).7C10 = C5×C165C4φ: C10/C5C2 ⊆ Aut C2×C16320(C2xC16).7C10320,151
(C2×C16).8C10 = C5×M6(2)φ: C10/C5C2 ⊆ Aut C2×C161602(C2xC16).8C10320,175

׿
×
𝔽