Copied to
clipboard

G = C5×D8.C4order 320 = 26·5

Direct product of C5 and D8.C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C5×D8.C4, D8.1C20, C20.69D8, C40.101D4, Q16.1C20, (C2×C80)⋊8C2, (C2×C16)⋊4C10, C8.9(C2×C20), (C5×D8).5C4, C4.18(C5×D8), C8.21(C5×D4), C4○D8.1C10, (C5×Q16).5C4, C8.C41C10, C40.106(C2×C4), (C2×C20).407D4, (C2×C10).17SD16, C22.1(C5×SD16), (C2×C40).430C22, C10.54(D4⋊C4), C20.118(C22⋊C4), (C5×C4○D8).6C2, (C2×C4).61(C5×D4), C4.3(C5×C22⋊C4), (C2×C8).88(C2×C10), C2.8(C5×D4⋊C4), (C5×C8.C4)⋊10C2, SmallGroup(320,164)

Series: Derived Chief Lower central Upper central

C1C8 — C5×D8.C4
C1C2C4C2×C4C2×C8C2×C40C5×C8.C4 — C5×D8.C4
C1C2C4C8 — C5×D8.C4
C1C20C2×C20C2×C40 — C5×D8.C4

Generators and relations for C5×D8.C4
 G = < a,b,c,d | a5=b8=c2=1, d4=b4, ab=ba, ac=ca, ad=da, cbc=dbd-1=b-1, dcd-1=b5c >

2C2
8C2
4C4
4C22
2C10
8C10
2D4
2Q8
4D4
4C2×C4
4C8
4C2×C10
4C20
2M4(2)
2C4○D4
2C16
2SD16
2C5×D4
2C5×Q8
4C2×C20
4C40
4C5×D4
2C5×C4○D4
2C80
2C5×M4(2)
2C5×SD16

Smallest permutation representation of C5×D8.C4
On 160 points
Generators in S160
(1 78 62 46 30)(2 79 63 47 31)(3 80 64 48 32)(4 73 57 41 25)(5 74 58 42 26)(6 75 59 43 27)(7 76 60 44 28)(8 77 61 45 29)(9 148 132 116 100)(10 149 133 117 101)(11 150 134 118 102)(12 151 135 119 103)(13 152 136 120 104)(14 145 129 113 97)(15 146 130 114 98)(16 147 131 115 99)(17 87 65 49 33)(18 88 66 50 34)(19 81 67 51 35)(20 82 68 52 36)(21 83 69 53 37)(22 84 70 54 38)(23 85 71 55 39)(24 86 72 56 40)(89 153 137 121 105)(90 154 138 122 106)(91 155 139 123 107)(92 156 140 124 108)(93 157 141 125 109)(94 158 142 126 110)(95 159 143 127 111)(96 160 144 128 112)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 8)(2 7)(3 6)(4 5)(9 13)(10 12)(14 16)(17 20)(18 19)(21 24)(22 23)(25 26)(27 32)(28 31)(29 30)(33 36)(34 35)(37 40)(38 39)(41 42)(43 48)(44 47)(45 46)(49 52)(50 51)(53 56)(54 55)(57 58)(59 64)(60 63)(61 62)(65 68)(66 67)(69 72)(70 71)(73 74)(75 80)(76 79)(77 78)(81 88)(82 87)(83 86)(84 85)(89 93)(90 92)(94 96)(97 99)(100 104)(101 103)(105 109)(106 108)(110 112)(113 115)(116 120)(117 119)(121 125)(122 124)(126 128)(129 131)(132 136)(133 135)(137 141)(138 140)(142 144)(145 147)(148 152)(149 151)(153 157)(154 156)(158 160)
(1 103 23 92 5 99 19 96)(2 102 24 91 6 98 20 95)(3 101 17 90 7 97 21 94)(4 100 18 89 8 104 22 93)(9 88 153 77 13 84 157 73)(10 87 154 76 14 83 158 80)(11 86 155 75 15 82 159 79)(12 85 156 74 16 81 160 78)(25 116 34 105 29 120 38 109)(26 115 35 112 30 119 39 108)(27 114 36 111 31 118 40 107)(28 113 37 110 32 117 33 106)(41 132 50 121 45 136 54 125)(42 131 51 128 46 135 55 124)(43 130 52 127 47 134 56 123)(44 129 53 126 48 133 49 122)(57 148 66 137 61 152 70 141)(58 147 67 144 62 151 71 140)(59 146 68 143 63 150 72 139)(60 145 69 142 64 149 65 138)

G:=sub<Sym(160)| (1,78,62,46,30)(2,79,63,47,31)(3,80,64,48,32)(4,73,57,41,25)(5,74,58,42,26)(6,75,59,43,27)(7,76,60,44,28)(8,77,61,45,29)(9,148,132,116,100)(10,149,133,117,101)(11,150,134,118,102)(12,151,135,119,103)(13,152,136,120,104)(14,145,129,113,97)(15,146,130,114,98)(16,147,131,115,99)(17,87,65,49,33)(18,88,66,50,34)(19,81,67,51,35)(20,82,68,52,36)(21,83,69,53,37)(22,84,70,54,38)(23,85,71,55,39)(24,86,72,56,40)(89,153,137,121,105)(90,154,138,122,106)(91,155,139,123,107)(92,156,140,124,108)(93,157,141,125,109)(94,158,142,126,110)(95,159,143,127,111)(96,160,144,128,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,16)(17,20)(18,19)(21,24)(22,23)(25,26)(27,32)(28,31)(29,30)(33,36)(34,35)(37,40)(38,39)(41,42)(43,48)(44,47)(45,46)(49,52)(50,51)(53,56)(54,55)(57,58)(59,64)(60,63)(61,62)(65,68)(66,67)(69,72)(70,71)(73,74)(75,80)(76,79)(77,78)(81,88)(82,87)(83,86)(84,85)(89,93)(90,92)(94,96)(97,99)(100,104)(101,103)(105,109)(106,108)(110,112)(113,115)(116,120)(117,119)(121,125)(122,124)(126,128)(129,131)(132,136)(133,135)(137,141)(138,140)(142,144)(145,147)(148,152)(149,151)(153,157)(154,156)(158,160), (1,103,23,92,5,99,19,96)(2,102,24,91,6,98,20,95)(3,101,17,90,7,97,21,94)(4,100,18,89,8,104,22,93)(9,88,153,77,13,84,157,73)(10,87,154,76,14,83,158,80)(11,86,155,75,15,82,159,79)(12,85,156,74,16,81,160,78)(25,116,34,105,29,120,38,109)(26,115,35,112,30,119,39,108)(27,114,36,111,31,118,40,107)(28,113,37,110,32,117,33,106)(41,132,50,121,45,136,54,125)(42,131,51,128,46,135,55,124)(43,130,52,127,47,134,56,123)(44,129,53,126,48,133,49,122)(57,148,66,137,61,152,70,141)(58,147,67,144,62,151,71,140)(59,146,68,143,63,150,72,139)(60,145,69,142,64,149,65,138)>;

G:=Group( (1,78,62,46,30)(2,79,63,47,31)(3,80,64,48,32)(4,73,57,41,25)(5,74,58,42,26)(6,75,59,43,27)(7,76,60,44,28)(8,77,61,45,29)(9,148,132,116,100)(10,149,133,117,101)(11,150,134,118,102)(12,151,135,119,103)(13,152,136,120,104)(14,145,129,113,97)(15,146,130,114,98)(16,147,131,115,99)(17,87,65,49,33)(18,88,66,50,34)(19,81,67,51,35)(20,82,68,52,36)(21,83,69,53,37)(22,84,70,54,38)(23,85,71,55,39)(24,86,72,56,40)(89,153,137,121,105)(90,154,138,122,106)(91,155,139,123,107)(92,156,140,124,108)(93,157,141,125,109)(94,158,142,126,110)(95,159,143,127,111)(96,160,144,128,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,16)(17,20)(18,19)(21,24)(22,23)(25,26)(27,32)(28,31)(29,30)(33,36)(34,35)(37,40)(38,39)(41,42)(43,48)(44,47)(45,46)(49,52)(50,51)(53,56)(54,55)(57,58)(59,64)(60,63)(61,62)(65,68)(66,67)(69,72)(70,71)(73,74)(75,80)(76,79)(77,78)(81,88)(82,87)(83,86)(84,85)(89,93)(90,92)(94,96)(97,99)(100,104)(101,103)(105,109)(106,108)(110,112)(113,115)(116,120)(117,119)(121,125)(122,124)(126,128)(129,131)(132,136)(133,135)(137,141)(138,140)(142,144)(145,147)(148,152)(149,151)(153,157)(154,156)(158,160), (1,103,23,92,5,99,19,96)(2,102,24,91,6,98,20,95)(3,101,17,90,7,97,21,94)(4,100,18,89,8,104,22,93)(9,88,153,77,13,84,157,73)(10,87,154,76,14,83,158,80)(11,86,155,75,15,82,159,79)(12,85,156,74,16,81,160,78)(25,116,34,105,29,120,38,109)(26,115,35,112,30,119,39,108)(27,114,36,111,31,118,40,107)(28,113,37,110,32,117,33,106)(41,132,50,121,45,136,54,125)(42,131,51,128,46,135,55,124)(43,130,52,127,47,134,56,123)(44,129,53,126,48,133,49,122)(57,148,66,137,61,152,70,141)(58,147,67,144,62,151,71,140)(59,146,68,143,63,150,72,139)(60,145,69,142,64,149,65,138) );

G=PermutationGroup([(1,78,62,46,30),(2,79,63,47,31),(3,80,64,48,32),(4,73,57,41,25),(5,74,58,42,26),(6,75,59,43,27),(7,76,60,44,28),(8,77,61,45,29),(9,148,132,116,100),(10,149,133,117,101),(11,150,134,118,102),(12,151,135,119,103),(13,152,136,120,104),(14,145,129,113,97),(15,146,130,114,98),(16,147,131,115,99),(17,87,65,49,33),(18,88,66,50,34),(19,81,67,51,35),(20,82,68,52,36),(21,83,69,53,37),(22,84,70,54,38),(23,85,71,55,39),(24,86,72,56,40),(89,153,137,121,105),(90,154,138,122,106),(91,155,139,123,107),(92,156,140,124,108),(93,157,141,125,109),(94,158,142,126,110),(95,159,143,127,111),(96,160,144,128,112)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,8),(2,7),(3,6),(4,5),(9,13),(10,12),(14,16),(17,20),(18,19),(21,24),(22,23),(25,26),(27,32),(28,31),(29,30),(33,36),(34,35),(37,40),(38,39),(41,42),(43,48),(44,47),(45,46),(49,52),(50,51),(53,56),(54,55),(57,58),(59,64),(60,63),(61,62),(65,68),(66,67),(69,72),(70,71),(73,74),(75,80),(76,79),(77,78),(81,88),(82,87),(83,86),(84,85),(89,93),(90,92),(94,96),(97,99),(100,104),(101,103),(105,109),(106,108),(110,112),(113,115),(116,120),(117,119),(121,125),(122,124),(126,128),(129,131),(132,136),(133,135),(137,141),(138,140),(142,144),(145,147),(148,152),(149,151),(153,157),(154,156),(158,160)], [(1,103,23,92,5,99,19,96),(2,102,24,91,6,98,20,95),(3,101,17,90,7,97,21,94),(4,100,18,89,8,104,22,93),(9,88,153,77,13,84,157,73),(10,87,154,76,14,83,158,80),(11,86,155,75,15,82,159,79),(12,85,156,74,16,81,160,78),(25,116,34,105,29,120,38,109),(26,115,35,112,30,119,39,108),(27,114,36,111,31,118,40,107),(28,113,37,110,32,117,33,106),(41,132,50,121,45,136,54,125),(42,131,51,128,46,135,55,124),(43,130,52,127,47,134,56,123),(44,129,53,126,48,133,49,122),(57,148,66,137,61,152,70,141),(58,147,67,144,62,151,71,140),(59,146,68,143,63,150,72,139),(60,145,69,142,64,149,65,138)])

110 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C5D8A8B8C8D8E8F10A10B10C10D10E10F10G10H10I10J10K10L16A···16H20A···20H20I20J20K20L20M20N20O20P40A···40P40Q···40X80A···80AF
order12224444555588888810101010101010101010101016···1620···20202020202020202040···4040···4080···80
size1128112811112222881111222288882···21···1222288882···28···82···2

110 irreducible representations

dim1111111111112222222222
type+++++++
imageC1C2C2C2C4C4C5C10C10C10C20C20D4D4D8SD16C5×D4C5×D4D8.C4C5×D8C5×SD16C5×D8.C4
kernelC5×D8.C4C5×C8.C4C2×C80C5×C4○D8C5×D8C5×Q16D8.C4C8.C4C2×C16C4○D8D8Q16C40C2×C20C20C2×C10C8C2×C4C5C4C22C1
# reps11112244448811224488832

Matrix representation of C5×D8.C4 in GL2(𝔽241) generated by

980
098
,
11230
1111
,
11230
230230
,
2543
43216
G:=sub<GL(2,GF(241))| [98,0,0,98],[11,11,230,11],[11,230,230,230],[25,43,43,216] >;

C5×D8.C4 in GAP, Magma, Sage, TeX

C_5\times D_8.C_4
% in TeX

G:=Group("C5xD8.C4");
// GroupNames label

G:=SmallGroup(320,164);
// by ID

G=gap.SmallGroup(320,164);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,2803,1410,360,172,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^2=1,d^4=b^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=d*b*d^-1=b^-1,d*c*d^-1=b^5*c>;
// generators/relations

Export

Subgroup lattice of C5×D8.C4 in TeX

׿
×
𝔽