direct product, metabelian, nilpotent (class 4), monomial, 2-elementary
Aliases: C10×D16, C40.72D4, C20.44D8, C80⋊10C22, C40.72C23, C8.9(C5×D4), C4.6(C5×D8), (C2×C16)⋊5C10, (C2×C80)⋊12C2, C16⋊2(C2×C10), (C2×D8)⋊6C10, D8⋊1(C2×C10), C4.7(D4×C10), (C10×D8)⋊20C2, (C2×C10).55D8, C10.84(C2×D8), C2.12(C10×D8), C20.314(C2×D4), (C2×C20).426D4, (C5×D8)⋊17C22, C8.3(C22×C10), C22.14(C5×D8), (C2×C40).426C22, (C2×C4).82(C5×D4), (C2×C8).84(C2×C10), SmallGroup(320,1006)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10×D16
G = < a,b,c | a10=b16=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 274 in 98 conjugacy classes, 50 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C8, C2×C4, D4, C23, C10, C10, C10, C16, C2×C8, D8, D8, C2×D4, C20, C2×C10, C2×C10, C2×C16, D16, C2×D8, C40, C2×C20, C5×D4, C22×C10, C2×D16, C80, C2×C40, C5×D8, C5×D8, D4×C10, C2×C80, C5×D16, C10×D8, C10×D16
Quotients: C1, C2, C22, C5, D4, C23, C10, D8, C2×D4, C2×C10, D16, C2×D8, C5×D4, C22×C10, C2×D16, C5×D8, D4×C10, C5×D16, C10×D8, C10×D16
(1 139 147 98 76 126 59 32 35 82)(2 140 148 99 77 127 60 17 36 83)(3 141 149 100 78 128 61 18 37 84)(4 142 150 101 79 113 62 19 38 85)(5 143 151 102 80 114 63 20 39 86)(6 144 152 103 65 115 64 21 40 87)(7 129 153 104 66 116 49 22 41 88)(8 130 154 105 67 117 50 23 42 89)(9 131 155 106 68 118 51 24 43 90)(10 132 156 107 69 119 52 25 44 91)(11 133 157 108 70 120 53 26 45 92)(12 134 158 109 71 121 54 27 46 93)(13 135 159 110 72 122 55 28 47 94)(14 136 160 111 73 123 56 29 48 95)(15 137 145 112 74 124 57 30 33 96)(16 138 146 97 75 125 58 31 34 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 117)(2 116)(3 115)(4 114)(5 113)(6 128)(7 127)(8 126)(9 125)(10 124)(11 123)(12 122)(13 121)(14 120)(15 119)(16 118)(17 153)(18 152)(19 151)(20 150)(21 149)(22 148)(23 147)(24 146)(25 145)(26 160)(27 159)(28 158)(29 157)(30 156)(31 155)(32 154)(33 107)(34 106)(35 105)(36 104)(37 103)(38 102)(39 101)(40 100)(41 99)(42 98)(43 97)(44 112)(45 111)(46 110)(47 109)(48 108)(49 140)(50 139)(51 138)(52 137)(53 136)(54 135)(55 134)(56 133)(57 132)(58 131)(59 130)(60 129)(61 144)(62 143)(63 142)(64 141)(65 84)(66 83)(67 82)(68 81)(69 96)(70 95)(71 94)(72 93)(73 92)(74 91)(75 90)(76 89)(77 88)(78 87)(79 86)(80 85)
G:=sub<Sym(160)| (1,139,147,98,76,126,59,32,35,82)(2,140,148,99,77,127,60,17,36,83)(3,141,149,100,78,128,61,18,37,84)(4,142,150,101,79,113,62,19,38,85)(5,143,151,102,80,114,63,20,39,86)(6,144,152,103,65,115,64,21,40,87)(7,129,153,104,66,116,49,22,41,88)(8,130,154,105,67,117,50,23,42,89)(9,131,155,106,68,118,51,24,43,90)(10,132,156,107,69,119,52,25,44,91)(11,133,157,108,70,120,53,26,45,92)(12,134,158,109,71,121,54,27,46,93)(13,135,159,110,72,122,55,28,47,94)(14,136,160,111,73,123,56,29,48,95)(15,137,145,112,74,124,57,30,33,96)(16,138,146,97,75,125,58,31,34,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,117)(2,116)(3,115)(4,114)(5,113)(6,128)(7,127)(8,126)(9,125)(10,124)(11,123)(12,122)(13,121)(14,120)(15,119)(16,118)(17,153)(18,152)(19,151)(20,150)(21,149)(22,148)(23,147)(24,146)(25,145)(26,160)(27,159)(28,158)(29,157)(30,156)(31,155)(32,154)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,100)(41,99)(42,98)(43,97)(44,112)(45,111)(46,110)(47,109)(48,108)(49,140)(50,139)(51,138)(52,137)(53,136)(54,135)(55,134)(56,133)(57,132)(58,131)(59,130)(60,129)(61,144)(62,143)(63,142)(64,141)(65,84)(66,83)(67,82)(68,81)(69,96)(70,95)(71,94)(72,93)(73,92)(74,91)(75,90)(76,89)(77,88)(78,87)(79,86)(80,85)>;
G:=Group( (1,139,147,98,76,126,59,32,35,82)(2,140,148,99,77,127,60,17,36,83)(3,141,149,100,78,128,61,18,37,84)(4,142,150,101,79,113,62,19,38,85)(5,143,151,102,80,114,63,20,39,86)(6,144,152,103,65,115,64,21,40,87)(7,129,153,104,66,116,49,22,41,88)(8,130,154,105,67,117,50,23,42,89)(9,131,155,106,68,118,51,24,43,90)(10,132,156,107,69,119,52,25,44,91)(11,133,157,108,70,120,53,26,45,92)(12,134,158,109,71,121,54,27,46,93)(13,135,159,110,72,122,55,28,47,94)(14,136,160,111,73,123,56,29,48,95)(15,137,145,112,74,124,57,30,33,96)(16,138,146,97,75,125,58,31,34,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,117)(2,116)(3,115)(4,114)(5,113)(6,128)(7,127)(8,126)(9,125)(10,124)(11,123)(12,122)(13,121)(14,120)(15,119)(16,118)(17,153)(18,152)(19,151)(20,150)(21,149)(22,148)(23,147)(24,146)(25,145)(26,160)(27,159)(28,158)(29,157)(30,156)(31,155)(32,154)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,100)(41,99)(42,98)(43,97)(44,112)(45,111)(46,110)(47,109)(48,108)(49,140)(50,139)(51,138)(52,137)(53,136)(54,135)(55,134)(56,133)(57,132)(58,131)(59,130)(60,129)(61,144)(62,143)(63,142)(64,141)(65,84)(66,83)(67,82)(68,81)(69,96)(70,95)(71,94)(72,93)(73,92)(74,91)(75,90)(76,89)(77,88)(78,87)(79,86)(80,85) );
G=PermutationGroup([[(1,139,147,98,76,126,59,32,35,82),(2,140,148,99,77,127,60,17,36,83),(3,141,149,100,78,128,61,18,37,84),(4,142,150,101,79,113,62,19,38,85),(5,143,151,102,80,114,63,20,39,86),(6,144,152,103,65,115,64,21,40,87),(7,129,153,104,66,116,49,22,41,88),(8,130,154,105,67,117,50,23,42,89),(9,131,155,106,68,118,51,24,43,90),(10,132,156,107,69,119,52,25,44,91),(11,133,157,108,70,120,53,26,45,92),(12,134,158,109,71,121,54,27,46,93),(13,135,159,110,72,122,55,28,47,94),(14,136,160,111,73,123,56,29,48,95),(15,137,145,112,74,124,57,30,33,96),(16,138,146,97,75,125,58,31,34,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,117),(2,116),(3,115),(4,114),(5,113),(6,128),(7,127),(8,126),(9,125),(10,124),(11,123),(12,122),(13,121),(14,120),(15,119),(16,118),(17,153),(18,152),(19,151),(20,150),(21,149),(22,148),(23,147),(24,146),(25,145),(26,160),(27,159),(28,158),(29,157),(30,156),(31,155),(32,154),(33,107),(34,106),(35,105),(36,104),(37,103),(38,102),(39,101),(40,100),(41,99),(42,98),(43,97),(44,112),(45,111),(46,110),(47,109),(48,108),(49,140),(50,139),(51,138),(52,137),(53,136),(54,135),(55,134),(56,133),(57,132),(58,131),(59,130),(60,129),(61,144),(62,143),(63,142),(64,141),(65,84),(66,83),(67,82),(68,81),(69,96),(70,95),(71,94),(72,93),(73,92),(74,91),(75,90),(76,89),(77,88),(78,87),(79,86),(80,85)]])
110 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | ··· | 10L | 10M | ··· | 10AB | 16A | ··· | 16H | 20A | ··· | 20H | 40A | ··· | 40P | 80A | ··· | 80AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 16 | ··· | 16 | 20 | ··· | 20 | 40 | ··· | 40 | 80 | ··· | 80 |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 8 | ··· | 8 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | D4 | D8 | D8 | D16 | C5×D4 | C5×D4 | C5×D8 | C5×D8 | C5×D16 |
kernel | C10×D16 | C2×C80 | C5×D16 | C10×D8 | C2×D16 | C2×C16 | D16 | C2×D8 | C40 | C2×C20 | C20 | C2×C10 | C10 | C8 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 1 | 4 | 2 | 4 | 4 | 16 | 8 | 1 | 1 | 2 | 2 | 8 | 4 | 4 | 8 | 8 | 32 |
Matrix representation of C10×D16 ►in GL3(𝔽241) generated by
240 | 0 | 0 |
0 | 91 | 0 |
0 | 0 | 91 |
1 | 0 | 0 |
0 | 156 | 27 |
0 | 214 | 156 |
1 | 0 | 0 |
0 | 85 | 214 |
0 | 214 | 156 |
G:=sub<GL(3,GF(241))| [240,0,0,0,91,0,0,0,91],[1,0,0,0,156,214,0,27,156],[1,0,0,0,85,214,0,214,156] >;
C10×D16 in GAP, Magma, Sage, TeX
C_{10}\times D_{16}
% in TeX
G:=Group("C10xD16");
// GroupNames label
G:=SmallGroup(320,1006);
// by ID
G=gap.SmallGroup(320,1006);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,4204,2111,242,10085,5052,124]);
// Polycyclic
G:=Group<a,b,c|a^10=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations