| extension | φ:Q→Out N | d | ρ | Label | ID | 
| (C2×D4×D5)⋊1C2 = D4⋊D20 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):1C2 | 320,400 | 
| (C2×D4×D5)⋊2C2 = D20⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):2C2 | 320,783 | 
| (C2×D4×D5)⋊3C2 = D4×D20 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):3C2 | 320,1221 | 
| (C2×D4×D5)⋊4C2 = D4⋊5D20 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):4C2 | 320,1226 | 
| (C2×D4×D5)⋊5C2 = D5×C22≀C2 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 |  | (C2xD4xD5):5C2 | 320,1260 | 
| (C2×D4×D5)⋊6C2 = C24⋊3D10 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):6C2 | 320,1261 | 
| (C2×D4×D5)⋊7C2 = C24⋊4D10 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):7C2 | 320,1262 | 
| (C2×D4×D5)⋊8C2 = D5×C4⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):8C2 | 320,1276 | 
| (C2×D4×D5)⋊9C2 = C10.372+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):9C2 | 320,1277 | 
| (C2×D4×D5)⋊10C2 = C10.382+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):10C2 | 320,1279 | 
| (C2×D4×D5)⋊11C2 = D20⋊19D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):11C2 | 320,1281 | 
| (C2×D4×D5)⋊12C2 = C10.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):12C2 | 320,1282 | 
| (C2×D4×D5)⋊13C2 = D20⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):13C2 | 320,1284 | 
| (C2×D4×D5)⋊14C2 = C10.1202+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):14C2 | 320,1325 | 
| (C2×D4×D5)⋊15C2 = C10.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):15C2 | 320,1326 | 
| (C2×D4×D5)⋊16C2 = C42⋊18D10 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):16C2 | 320,1346 | 
| (C2×D4×D5)⋊17C2 = D20⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):17C2 | 320,1348 | 
| (C2×D4×D5)⋊18C2 = D5×C4⋊1D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):18C2 | 320,1386 | 
| (C2×D4×D5)⋊19C2 = C42⋊26D10 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):19C2 | 320,1387 | 
| (C2×D4×D5)⋊20C2 = D20⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):20C2 | 320,1389 | 
| (C2×D4×D5)⋊21C2 = C2×D5×D8 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):21C2 | 320,1426 | 
| (C2×D4×D5)⋊22C2 = C2×D8⋊D5 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):22C2 | 320,1427 | 
| (C2×D4×D5)⋊23C2 = C2×D40⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):23C2 | 320,1431 | 
| (C2×D4×D5)⋊24C2 = D5×C8⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 | 8+ | (C2xD4xD5):24C2 | 320,1444 | 
| (C2×D4×D5)⋊25C2 = D4×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):25C2 | 320,1473 | 
| (C2×D4×D5)⋊26C2 = C10.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):26C2 | 320,1501 | 
| (C2×D4×D5)⋊27C2 = C2×D4⋊6D10 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):27C2 | 320,1614 | 
| (C2×D4×D5)⋊28C2 = C2×D4⋊8D10 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5):28C2 | 320,1619 | 
| (C2×D4×D5)⋊29C2 = D5×2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 | 8+ | (C2xD4xD5):29C2 | 320,1622 | 
| (C2×D4×D5)⋊30C2 = C2×D5×C4○D4 | φ: trivial image | 80 |  | (C2xD4xD5):30C2 | 320,1618 | 
| extension | φ:Q→Out N | d | ρ | Label | ID | 
| (C2×D4×D5).1C2 = D5×C23⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 | 8+ | (C2xD4xD5).1C2 | 320,370 | 
| (C2×D4×D5).2C2 = D5×C4.D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 | 8+ | (C2xD4xD5).2C2 | 320,371 | 
| (C2×D4×D5).3C2 = D5×D4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).3C2 | 320,396 | 
| (C2×D4×D5).4C2 = (D4×D5)⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).4C2 | 320,397 | 
| (C2×D4×D5).5C2 = D20.8D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).5C2 | 320,403 | 
| (C2×D4×D5).6C2 = D10⋊6SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).6C2 | 320,796 | 
| (C2×D4×D5).7C2 = (C2×D4)⋊7F5 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 | 8+ | (C2xD4xD5).7C2 | 320,1108 | 
| (C2×D4×D5).8C2 = (C2×F5)⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 |  | (C2xD4xD5).8C2 | 320,1117 | 
| (C2×D4×D5).9C2 = C42⋊11D10 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).9C2 | 320,1217 | 
| (C2×D4×D5).10C2 = D5×C22.D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).10C2 | 320,1324 | 
| (C2×D4×D5).11C2 = D5×C4.4D4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).11C2 | 320,1345 | 
| (C2×D4×D5).12C2 = C2×D5×SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).12C2 | 320,1430 | 
| (C2×D4×D5).13C2 = C2×D20⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).13C2 | 320,1104 | 
| (C2×D4×D5).14C2 = (D4×C10)⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 | 8+ | (C2xD4xD5).14C2 | 320,1105 | 
| (C2×D4×D5).15C2 = D5⋊(C4.D4) | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 | 8+ | (C2xD4xD5).15C2 | 320,1116 | 
| (C2×D4×D5).16C2 = C2.(D4×F5) | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 80 |  | (C2xD4xD5).16C2 | 320,1118 | 
| (C2×D4×D5).17C2 = C2×D4×F5 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 |  | (C2xD4xD5).17C2 | 320,1595 | 
| (C2×D4×D5).18C2 = D10.C24 | φ: C2/C1 → C2 ⊆ Out C2×D4×D5 | 40 | 8+ | (C2xD4xD5).18C2 | 320,1596 | 
| (C2×D4×D5).19C2 = C4×D4×D5 | φ: trivial image | 80 |  | (C2xD4xD5).19C2 | 320,1216 |