direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2xD4xD5, C20:C23, C23:3D10, D20:7C22, D10:2C23, C10.5C24, Dic5:1C23, (C2xC4):6D10, C10:2(C2xD4), (C2xC10):C23, C5:2(C22xD4), (D4xC10):5C2, C4:1(C22xD5), (C2xD20):11C2, (C2xC20):2C22, (C23xD5):4C2, (C4xD5):3C22, (C5xD4):5C22, C5:D4:1C22, C2.6(C23xD5), C22:1(C22xD5), (C22xC10):4C22, (C2xDic5):8C22, (C22xD5):6C22, (C2xC4xD5):3C2, (C2xC5:D4):9C2, SmallGroup(160,217)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xD4xD5
G = < a,b,c,d,e | a2=b4=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 808 in 236 conjugacy classes, 97 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, D4, C23, C23, D5, D5, C10, C10, C10, C22xC4, C2xD4, C2xD4, C24, Dic5, C20, D10, D10, C2xC10, C2xC10, C2xC10, C22xD4, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C22xD5, C22xD5, C22xD5, C22xC10, C2xC4xD5, C2xD20, D4xD5, C2xC5:D4, D4xC10, C23xD5, C2xD4xD5
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C22xD4, C22xD5, D4xD5, C23xD5, C2xD4xD5
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 24 9 29)(2 25 10 30)(3 21 6 26)(4 22 7 27)(5 23 8 28)(11 31 16 36)(12 32 17 37)(13 33 18 38)(14 34 19 39)(15 35 20 40)
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 11)(7 15)(8 14)(9 13)(10 12)(21 36)(22 40)(23 39)(24 38)(25 37)(26 31)(27 35)(28 34)(29 33)(30 32)
G:=sub<Sym(40)| (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,24,9,29)(2,25,10,30)(3,21,6,26)(4,22,7,27)(5,23,8,28)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,18)(2,17)(3,16)(4,20)(5,19)(6,11)(7,15)(8,14)(9,13)(10,12)(21,36)(22,40)(23,39)(24,38)(25,37)(26,31)(27,35)(28,34)(29,33)(30,32)>;
G:=Group( (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,24,9,29)(2,25,10,30)(3,21,6,26)(4,22,7,27)(5,23,8,28)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,18)(2,17)(3,16)(4,20)(5,19)(6,11)(7,15)(8,14)(9,13)(10,12)(21,36)(22,40)(23,39)(24,38)(25,37)(26,31)(27,35)(28,34)(29,33)(30,32) );
G=PermutationGroup([[(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,24,9,29),(2,25,10,30),(3,21,6,26),(4,22,7,27),(5,23,8,28),(11,31,16,36),(12,32,17,37),(13,33,18,38),(14,34,19,39),(15,35,20,40)], [(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,11),(7,15),(8,14),(9,13),(10,12),(21,36),(22,40),(23,39),(24,38),(25,37),(26,31),(27,35),(28,34),(29,33),(30,32)]])
C2xD4xD5 is a maximal subgroup of
(D4xD5):C4 D4:D20 D20.8D4 D20:D4 D10:6SD16 (D4xC10):C4 (C2xD4):7F5 D5:(C4.D4) (C2xF5):D4 C2.(D4xF5) C42:11D10 D4:5D20 C24:3D10 C24:4D10 C10.372+ 1+4 C10.382+ 1+4 D20:19D4 C10.402+ 1+4 D20:20D4 C10.1202+ 1+4 C10.1212+ 1+4 C42:18D10 D20:10D4 C42:26D10 D20:11D4 C10.1452+ 1+4 D10.C24
C2xD4xD5 is a maximal quotient of
C24.27D10 C10.2- 1+4 C42:12D10 C42.228D10 D20:23D4 D20:24D4 Dic10:23D4 Dic10:24D4 C24.56D10 C24:3D10 C24:4D10 C24.33D10 C24.34D10 C20:(C4oD4) C10.682- 1+4 Dic10:19D4 Dic10:20D4 C10.372+ 1+4 C4:C4:21D10 C10.382+ 1+4 C10.392+ 1+4 D20:19D4 C10.402+ 1+4 C10.732- 1+4 D20:20D4 C4:C4:26D10 C10.162- 1+4 C10.172- 1+4 D20:21D4 D20:22D4 Dic10:21D4 Dic10:22D4 C10.792- 1+4 C10.1202+ 1+4 C10.1212+ 1+4 C10.822- 1+4 C4:C4:28D10 C42.233D10 C42:18D10 C42.141D10 D20:10D4 Dic10:10D4 C42:26D10 C42.238D10 D20:11D4 Dic10:11D4 C42.171D10 C42.240D10 D20:12D4 D20:8Q8 D8:13D10 D20.29D4 D20.30D4 Q16:D10 D8:15D10 D8:11D10 D20.47D4 SD16:D10 D8:5D10 D8:6D10 D40:C22 C40.C23 D20.44D4
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 2 | 2 | 10 | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D10 | D4xD5 |
kernel | C2xD4xD5 | C2xC4xD5 | C2xD20 | D4xD5 | C2xC5:D4 | D4xC10 | C23xD5 | D10 | C2xD4 | C2xC4 | D4 | C23 | C2 |
# reps | 1 | 1 | 1 | 8 | 2 | 1 | 2 | 4 | 2 | 2 | 8 | 4 | 4 |
Matrix representation of C2xD4xD5 ►in GL4(F41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 |
40 | 6 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 40 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,40],[0,40,0,0,1,6,0,0,0,0,1,0,0,0,0,1],[0,40,0,0,40,0,0,0,0,0,1,0,0,0,0,1] >;
C2xD4xD5 in GAP, Magma, Sage, TeX
C_2\times D_4\times D_5
% in TeX
G:=Group("C2xD4xD5");
// GroupNames label
G:=SmallGroup(160,217);
// by ID
G=gap.SmallGroup(160,217);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,159,4613]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations