Copied to
clipboard

G = C2×D48D10order 320 = 26·5

Direct product of C2 and D48D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D48D10, D2012C23, C20.47C24, C10.12C25, D10.6C24, C1022+ 1+4, Dic5.7C24, Dic1014C23, C4○D417D10, (C2×D4)⋊50D10, (C2×C20)⋊7C23, (C2×Q8)⋊39D10, (C4×D5)⋊2C23, D49(C22×D5), C5⋊D45C23, (C5×Q8)⋊9C23, Q88(C22×D5), (C5×D4)⋊10C23, (D4×D5)⋊12C22, (C22×C4)⋊33D10, (C2×C10).3C24, C2.13(D5×C24), C4.62(C23×D5), C52(C2×2+ 1+4), C4○D2025C22, (C2×D20)⋊64C22, (C22×D20)⋊24C2, (D4×C10)⋊53C22, (Q8×C10)⋊46C22, (C22×D5)⋊5C23, (C22×C20)⋊28C22, Q82D513C22, (C23×D5)⋊18C22, C22.56(C23×D5), (C2×Dic10)⋊78C22, C23.214(C22×D5), (C22×C10).248C23, (C2×Dic5).309C23, (C2×D4×D5)⋊28C2, (C2×C4○D4)⋊13D5, (C2×C4×D5)⋊34C22, (C2×C4)⋊6(C22×D5), (C10×C4○D4)⋊14C2, (C2×C4○D20)⋊37C2, (C2×Q82D5)⋊21C2, (C5×C4○D4)⋊20C22, (C2×C5⋊D4)⋊54C22, SmallGroup(320,1619)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D48D10
C1C5C10D10C22×D5C23×D5C2×D4×D5 — C2×D48D10
C5C10 — C2×D48D10
C1C22C2×C4○D4

Generators and relations for C2×D48D10
 G = < a,b,c,d,e | a2=b4=c2=d10=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=b2c, ce=ec, ede=d-1 >

Subgroups: 3182 in 898 conjugacy classes, 447 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, D5, C10, C10, C10, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C22×D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×D5, C22×C10, C2×2+ 1+4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, D4×D5, Q82D5, C2×C5⋊D4, C22×C20, D4×C10, Q8×C10, C5×C4○D4, C23×D5, C22×D20, C2×C4○D20, C2×D4×D5, C2×Q82D5, D48D10, C10×C4○D4, C2×D48D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, C25, C22×D5, C2×2+ 1+4, C23×D5, D48D10, D5×C24, C2×D48D10

Smallest permutation representation of C2×D48D10
On 80 points
Generators in S80
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 61)(11 46)(12 47)(13 48)(14 49)(15 50)(16 41)(17 42)(18 43)(19 44)(20 45)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 60)(32 51)(33 52)(34 53)(35 54)(36 55)(37 56)(38 57)(39 58)(40 59)
(1 20 60 22)(2 11 51 23)(3 12 52 24)(4 13 53 25)(5 14 54 26)(6 15 55 27)(7 16 56 28)(8 17 57 29)(9 18 58 30)(10 19 59 21)(31 72 62 45)(32 73 63 46)(33 74 64 47)(34 75 65 48)(35 76 66 49)(36 77 67 50)(37 78 68 41)(38 79 69 42)(39 80 70 43)(40 71 61 44)
(1 62)(2 32)(3 64)(4 34)(5 66)(6 36)(7 68)(8 38)(9 70)(10 40)(11 46)(12 74)(13 48)(14 76)(15 50)(16 78)(17 42)(18 80)(19 44)(20 72)(21 71)(22 45)(23 73)(24 47)(25 75)(26 49)(27 77)(28 41)(29 79)(30 43)(31 60)(33 52)(35 54)(37 56)(39 58)(51 63)(53 65)(55 67)(57 69)(59 61)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 5)(2 4)(6 10)(7 9)(11 25)(12 24)(13 23)(14 22)(15 21)(16 30)(17 29)(18 28)(19 27)(20 26)(31 35)(32 34)(36 40)(37 39)(41 80)(42 79)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(49 72)(50 71)(51 53)(54 60)(55 59)(56 58)(61 67)(62 66)(63 65)(68 70)

G:=sub<Sym(80)| (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,61)(11,46)(12,47)(13,48)(14,49)(15,50)(16,41)(17,42)(18,43)(19,44)(20,45)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,60)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59), (1,20,60,22)(2,11,51,23)(3,12,52,24)(4,13,53,25)(5,14,54,26)(6,15,55,27)(7,16,56,28)(8,17,57,29)(9,18,58,30)(10,19,59,21)(31,72,62,45)(32,73,63,46)(33,74,64,47)(34,75,65,48)(35,76,66,49)(36,77,67,50)(37,78,68,41)(38,79,69,42)(39,80,70,43)(40,71,61,44), (1,62)(2,32)(3,64)(4,34)(5,66)(6,36)(7,68)(8,38)(9,70)(10,40)(11,46)(12,74)(13,48)(14,76)(15,50)(16,78)(17,42)(18,80)(19,44)(20,72)(21,71)(22,45)(23,73)(24,47)(25,75)(26,49)(27,77)(28,41)(29,79)(30,43)(31,60)(33,52)(35,54)(37,56)(39,58)(51,63)(53,65)(55,67)(57,69)(59,61), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,5)(2,4)(6,10)(7,9)(11,25)(12,24)(13,23)(14,22)(15,21)(16,30)(17,29)(18,28)(19,27)(20,26)(31,35)(32,34)(36,40)(37,39)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,53)(54,60)(55,59)(56,58)(61,67)(62,66)(63,65)(68,70)>;

G:=Group( (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,61)(11,46)(12,47)(13,48)(14,49)(15,50)(16,41)(17,42)(18,43)(19,44)(20,45)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,60)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59), (1,20,60,22)(2,11,51,23)(3,12,52,24)(4,13,53,25)(5,14,54,26)(6,15,55,27)(7,16,56,28)(8,17,57,29)(9,18,58,30)(10,19,59,21)(31,72,62,45)(32,73,63,46)(33,74,64,47)(34,75,65,48)(35,76,66,49)(36,77,67,50)(37,78,68,41)(38,79,69,42)(39,80,70,43)(40,71,61,44), (1,62)(2,32)(3,64)(4,34)(5,66)(6,36)(7,68)(8,38)(9,70)(10,40)(11,46)(12,74)(13,48)(14,76)(15,50)(16,78)(17,42)(18,80)(19,44)(20,72)(21,71)(22,45)(23,73)(24,47)(25,75)(26,49)(27,77)(28,41)(29,79)(30,43)(31,60)(33,52)(35,54)(37,56)(39,58)(51,63)(53,65)(55,67)(57,69)(59,61), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,5)(2,4)(6,10)(7,9)(11,25)(12,24)(13,23)(14,22)(15,21)(16,30)(17,29)(18,28)(19,27)(20,26)(31,35)(32,34)(36,40)(37,39)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,53)(54,60)(55,59)(56,58)(61,67)(62,66)(63,65)(68,70) );

G=PermutationGroup([[(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,61),(11,46),(12,47),(13,48),(14,49),(15,50),(16,41),(17,42),(18,43),(19,44),(20,45),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,60),(32,51),(33,52),(34,53),(35,54),(36,55),(37,56),(38,57),(39,58),(40,59)], [(1,20,60,22),(2,11,51,23),(3,12,52,24),(4,13,53,25),(5,14,54,26),(6,15,55,27),(7,16,56,28),(8,17,57,29),(9,18,58,30),(10,19,59,21),(31,72,62,45),(32,73,63,46),(33,74,64,47),(34,75,65,48),(35,76,66,49),(36,77,67,50),(37,78,68,41),(38,79,69,42),(39,80,70,43),(40,71,61,44)], [(1,62),(2,32),(3,64),(4,34),(5,66),(6,36),(7,68),(8,38),(9,70),(10,40),(11,46),(12,74),(13,48),(14,76),(15,50),(16,78),(17,42),(18,80),(19,44),(20,72),(21,71),(22,45),(23,73),(24,47),(25,75),(26,49),(27,77),(28,41),(29,79),(30,43),(31,60),(33,52),(35,54),(37,56),(39,58),(51,63),(53,65),(55,67),(57,69),(59,61)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,5),(2,4),(6,10),(7,9),(11,25),(12,24),(13,23),(14,22),(15,21),(16,30),(17,29),(18,28),(19,27),(20,26),(31,35),(32,34),(36,40),(37,39),(41,80),(42,79),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(49,72),(50,71),(51,53),(54,60),(55,59),(56,58),(61,67),(62,66),(63,65),(68,70)]])

74 conjugacy classes

class 1 2A2B2C2D···2I2J···2U4A···4H4I4J4K4L5A5B10A···10F10G···10R20A···20H20I···20T
order12222···22···24···444445510···1010···1020···2020···20
size11112···210···102···210101010222···24···42···24···4

74 irreducible representations

dim11111112222244
type++++++++++++++
imageC1C2C2C2C2C2C2D5D10D10D10D102+ 1+4D48D10
kernelC2×D48D10C22×D20C2×C4○D20C2×D4×D5C2×Q82D5D48D10C10×C4○D4C2×C4○D4C22×C4C2×D4C2×Q8C4○D4C10C2
# reps1336216126621628

Matrix representation of C2×D48D10 in GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
100000
010000
0000400
0000040
001000
000100
,
100000
010000
001000
000100
0000400
0000040
,
7340000
7400000
0000216
00002516
00392500
00162500
,
0400000
4000000
0040600
000100
0000135
0000040

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,0,0,0,0,0,0,40,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[7,7,0,0,0,0,34,40,0,0,0,0,0,0,0,0,39,16,0,0,0,0,25,25,0,0,2,25,0,0,0,0,16,16,0,0],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,6,1,0,0,0,0,0,0,1,0,0,0,0,0,35,40] >;

C2×D48D10 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes_8D_{10}
% in TeX

G:=Group("C2xD4:8D10");
// GroupNames label

G:=SmallGroup(320,1619);
// by ID

G=gap.SmallGroup(320,1619);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,297,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^10=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^2*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽