Extensions 1→N→G→Q→1 with N=C10 and Q=C2×C16

Direct product G=N×Q with N=C10 and Q=C2×C16
dρLabelID
C22×C80320C2^2xC80320,1003

Semidirect products G=N:Q with N=C10 and Q=C2×C16
extensionφ:Q→Aut NdρLabelID
C101(C2×C16) = C2×D5⋊C16φ: C2×C16/C8C4 ⊆ Aut C10160C10:1(C2xC16)320,1051
C102(C2×C16) = C22×C5⋊C16φ: C2×C16/C2×C4C4 ⊆ Aut C10320C10:2(C2xC16)320,1080
C103(C2×C16) = D5×C2×C16φ: C2×C16/C16C2 ⊆ Aut C10160C10:3(C2xC16)320,526
C104(C2×C16) = C22×C52C16φ: C2×C16/C2×C8C2 ⊆ Aut C10320C10:4(C2xC16)320,723

Non-split extensions G=N.Q with N=C10 and Q=C2×C16
extensionφ:Q→Aut NdρLabelID
C10.1(C2×C16) = D5⋊C32φ: C2×C16/C8C4 ⊆ Aut C101604C10.1(C2xC16)320,179
C10.2(C2×C16) = C80.C4φ: C2×C16/C8C4 ⊆ Aut C101604C10.2(C2xC16)320,180
C10.3(C2×C16) = Dic5⋊C16φ: C2×C16/C8C4 ⊆ Aut C10320C10.3(C2xC16)320,223
C10.4(C2×C16) = D10⋊C16φ: C2×C16/C8C4 ⊆ Aut C10160C10.4(C2xC16)320,225
C10.5(C2×C16) = C10.M5(2)φ: C2×C16/C8C4 ⊆ Aut C10320C10.5(C2xC16)320,226
C10.6(C2×C16) = C4×C5⋊C16φ: C2×C16/C2×C4C4 ⊆ Aut C10320C10.6(C2xC16)320,195
C10.7(C2×C16) = C20⋊C16φ: C2×C16/C2×C4C4 ⊆ Aut C10320C10.7(C2xC16)320,196
C10.8(C2×C16) = C2×C5⋊C32φ: C2×C16/C2×C4C4 ⊆ Aut C10320C10.8(C2xC16)320,214
C10.9(C2×C16) = C5⋊M6(2)φ: C2×C16/C2×C4C4 ⊆ Aut C101604C10.9(C2xC16)320,215
C10.10(C2×C16) = C10.6M5(2)φ: C2×C16/C2×C4C4 ⊆ Aut C10160C10.10(C2xC16)320,249
C10.11(C2×C16) = D5×C32φ: C2×C16/C16C2 ⊆ Aut C101602C10.11(C2xC16)320,4
C10.12(C2×C16) = C32⋊D5φ: C2×C16/C16C2 ⊆ Aut C101602C10.12(C2xC16)320,5
C10.13(C2×C16) = C16×Dic5φ: C2×C16/C16C2 ⊆ Aut C10320C10.13(C2xC16)320,58
C10.14(C2×C16) = C40.88D4φ: C2×C16/C16C2 ⊆ Aut C10320C10.14(C2xC16)320,59
C10.15(C2×C16) = D101C16φ: C2×C16/C16C2 ⊆ Aut C10160C10.15(C2xC16)320,65
C10.16(C2×C16) = C4×C52C16φ: C2×C16/C2×C8C2 ⊆ Aut C10320C10.16(C2xC16)320,18
C10.17(C2×C16) = C203C16φ: C2×C16/C2×C8C2 ⊆ Aut C10320C10.17(C2xC16)320,20
C10.18(C2×C16) = C2×C52C32φ: C2×C16/C2×C8C2 ⊆ Aut C10320C10.18(C2xC16)320,56
C10.19(C2×C16) = C80.9C4φ: C2×C16/C2×C8C2 ⊆ Aut C101602C10.19(C2xC16)320,57
C10.20(C2×C16) = C40.91D4φ: C2×C16/C2×C8C2 ⊆ Aut C10160C10.20(C2xC16)320,107
C10.21(C2×C16) = C5×C22⋊C16central extension (φ=1)160C10.21(C2xC16)320,153
C10.22(C2×C16) = C5×C4⋊C16central extension (φ=1)320C10.22(C2xC16)320,168
C10.23(C2×C16) = C5×M6(2)central extension (φ=1)1602C10.23(C2xC16)320,175

׿
×
𝔽