Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4.F5

Direct product G=N×Q with N=C2 and Q=C2×C4.F5
dρLabelID
C22×C4.F5160C2^2xC4.F5320,1588


Non-split extensions G=N.Q with N=C2 and Q=C2×C4.F5
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4.F5) = C4×C4.F5central extension (φ=1)160C2.1(C2xC4.F5)320,1015
C2.2(C2×C4.F5) = C42.12F5central extension (φ=1)160C2.2(C2xC4.F5)320,1018
C2.3(C2×C4.F5) = C2×C20⋊C8central extension (φ=1)320C2.3(C2xC4.F5)320,1085
C2.4(C2×C4.F5) = C2×C10.C42central extension (φ=1)320C2.4(C2xC4.F5)320,1087
C2.5(C2×C4.F5) = C2×D10⋊C8central extension (φ=1)160C2.5(C2xC4.F5)320,1089
C2.6(C2×C4.F5) = C203M4(2)central stem extension (φ=1)160C2.6(C2xC4.F5)320,1019
C2.7(C2×C4.F5) = C42.15F5central stem extension (φ=1)160C2.7(C2xC4.F5)320,1021
C2.8(C2×C4.F5) = C5⋊C8⋊D4central stem extension (φ=1)160C2.8(C2xC4.F5)320,1031
C2.9(C2×C4.F5) = C20⋊M4(2)central stem extension (φ=1)160C2.9(C2xC4.F5)320,1043
C2.10(C2×C4.F5) = C20.M4(2)central stem extension (φ=1)320C2.10(C2xC4.F5)320,1047
C2.11(C2×C4.F5) = D1010M4(2)central stem extension (φ=1)80C2.11(C2xC4.F5)320,1094
C2.12(C2×C4.F5) = C20.30M4(2)central stem extension (φ=1)160C2.12(C2xC4.F5)320,1097

׿
×
𝔽