Copied to
clipboard

G = C5⋊C8⋊D4order 320 = 26·5

1st semidirect product of C5⋊C8 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5⋊C84D4, C2.6(D4×F5), C51(C89D4), C20⋊C89C2, C10.2(C4×D4), D10⋊C87C2, C22⋊C4.2F5, C10.3(C8○D4), (C2×C10)⋊1M4(2), C2.6(D4.F5), C221(C4.F5), C23.25(C2×F5), D10⋊C4.1C4, Dic5.66(C2×D4), C10.D4.1C4, C23.2F54C2, C10.C429C2, Dic54D4.7C2, C10.10(C2×M4(2)), Dic5.51(C4○D4), C22.69(C22×F5), (C4×Dic5).240C22, (C2×Dic5).323C23, (C22×Dic5).178C22, (C22×C5⋊C8)⋊2C2, (C2×C4.F5)⋊9C2, C2.8(C2×C4.F5), (C2×C5⋊D4).4C4, (C2×C4).20(C2×F5), (C2×C20).78(C2×C4), (C5×C22⋊C4).2C4, (C2×C5⋊C8).21C22, (C2×C4×D5).273C22, (C22×C10).14(C2×C4), (C2×C10).31(C22×C4), (C2×Dic5).48(C2×C4), (C22×D5).40(C2×C4), SmallGroup(320,1031)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C5⋊C8⋊D4
C1C5C10Dic5C2×Dic5C2×C5⋊C8C22×C5⋊C8 — C5⋊C8⋊D4
C5C2×C10 — C5⋊C8⋊D4
C1C22C22⋊C4

Generators and relations for C5⋊C8⋊D4
 G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=a3, cac-1=a-1, ad=da, cbc-1=b5, bd=db, dcd=c-1 >

Subgroups: 442 in 124 conjugacy classes, 48 normal (42 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, Dic5, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C5⋊C8, C5⋊C8, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, C89D4, C4×Dic5, C10.D4, D10⋊C4, C5×C22⋊C4, C4.F5, C2×C5⋊C8, C2×C5⋊C8, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C20⋊C8, C10.C42, D10⋊C8, C23.2F5, Dic54D4, C2×C4.F5, C22×C5⋊C8, C5⋊C8⋊D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5, C89D4, C4.F5, C22×F5, C2×C4.F5, D4.F5, D4×F5, C5⋊C8⋊D4

Smallest permutation representation of C5⋊C8⋊D4
On 160 points
Generators in S160
(1 65 83 36 159)(2 37 66 160 84)(3 153 38 85 67)(4 86 154 68 39)(5 69 87 40 155)(6 33 70 156 88)(7 157 34 81 71)(8 82 158 72 35)(9 133 122 54 103)(10 55 134 104 123)(11 97 56 124 135)(12 125 98 136 49)(13 129 126 50 99)(14 51 130 100 127)(15 101 52 128 131)(16 121 102 132 53)(17 138 114 90 63)(18 91 139 64 115)(19 57 92 116 140)(20 117 58 141 93)(21 142 118 94 59)(22 95 143 60 119)(23 61 96 120 144)(24 113 62 137 89)(25 47 74 150 112)(26 151 48 105 75)(27 106 152 76 41)(28 77 107 42 145)(29 43 78 146 108)(30 147 44 109 79)(31 110 148 80 45)(32 73 111 46 149)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 78 121 18)(2 75 122 23)(3 80 123 20)(4 77 124 17)(5 74 125 22)(6 79 126 19)(7 76 127 24)(8 73 128 21)(9 96 160 151)(10 93 153 148)(11 90 154 145)(12 95 155 150)(13 92 156 147)(14 89 157 152)(15 94 158 149)(16 91 159 146)(25 136 60 87)(26 133 61 84)(27 130 62 81)(28 135 63 86)(29 132 64 83)(30 129 57 88)(31 134 58 85)(32 131 59 82)(33 109 50 140)(34 106 51 137)(35 111 52 142)(36 108 53 139)(37 105 54 144)(38 110 55 141)(39 107 56 138)(40 112 49 143)(41 100 113 71)(42 97 114 68)(43 102 115 65)(44 99 116 70)(45 104 117 67)(46 101 118 72)(47 98 119 69)(48 103 120 66)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 17)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 89)(72 90)(73 124)(74 125)(75 126)(76 127)(77 128)(78 121)(79 122)(80 123)(81 137)(82 138)(83 139)(84 140)(85 141)(86 142)(87 143)(88 144)(97 149)(98 150)(99 151)(100 152)(101 145)(102 146)(103 147)(104 148)(105 129)(106 130)(107 131)(108 132)(109 133)(110 134)(111 135)(112 136)(113 157)(114 158)(115 159)(116 160)(117 153)(118 154)(119 155)(120 156)

G:=sub<Sym(160)| (1,65,83,36,159)(2,37,66,160,84)(3,153,38,85,67)(4,86,154,68,39)(5,69,87,40,155)(6,33,70,156,88)(7,157,34,81,71)(8,82,158,72,35)(9,133,122,54,103)(10,55,134,104,123)(11,97,56,124,135)(12,125,98,136,49)(13,129,126,50,99)(14,51,130,100,127)(15,101,52,128,131)(16,121,102,132,53)(17,138,114,90,63)(18,91,139,64,115)(19,57,92,116,140)(20,117,58,141,93)(21,142,118,94,59)(22,95,143,60,119)(23,61,96,120,144)(24,113,62,137,89)(25,47,74,150,112)(26,151,48,105,75)(27,106,152,76,41)(28,77,107,42,145)(29,43,78,146,108)(30,147,44,109,79)(31,110,148,80,45)(32,73,111,46,149), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,78,121,18)(2,75,122,23)(3,80,123,20)(4,77,124,17)(5,74,125,22)(6,79,126,19)(7,76,127,24)(8,73,128,21)(9,96,160,151)(10,93,153,148)(11,90,154,145)(12,95,155,150)(13,92,156,147)(14,89,157,152)(15,94,158,149)(16,91,159,146)(25,136,60,87)(26,133,61,84)(27,130,62,81)(28,135,63,86)(29,132,64,83)(30,129,57,88)(31,134,58,85)(32,131,59,82)(33,109,50,140)(34,106,51,137)(35,111,52,142)(36,108,53,139)(37,105,54,144)(38,110,55,141)(39,107,56,138)(40,112,49,143)(41,100,113,71)(42,97,114,68)(43,102,115,65)(44,99,116,70)(45,104,117,67)(46,101,118,72)(47,98,119,69)(48,103,120,66), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,89)(72,90)(73,124)(74,125)(75,126)(76,127)(77,128)(78,121)(79,122)(80,123)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(97,149)(98,150)(99,151)(100,152)(101,145)(102,146)(103,147)(104,148)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)(113,157)(114,158)(115,159)(116,160)(117,153)(118,154)(119,155)(120,156)>;

G:=Group( (1,65,83,36,159)(2,37,66,160,84)(3,153,38,85,67)(4,86,154,68,39)(5,69,87,40,155)(6,33,70,156,88)(7,157,34,81,71)(8,82,158,72,35)(9,133,122,54,103)(10,55,134,104,123)(11,97,56,124,135)(12,125,98,136,49)(13,129,126,50,99)(14,51,130,100,127)(15,101,52,128,131)(16,121,102,132,53)(17,138,114,90,63)(18,91,139,64,115)(19,57,92,116,140)(20,117,58,141,93)(21,142,118,94,59)(22,95,143,60,119)(23,61,96,120,144)(24,113,62,137,89)(25,47,74,150,112)(26,151,48,105,75)(27,106,152,76,41)(28,77,107,42,145)(29,43,78,146,108)(30,147,44,109,79)(31,110,148,80,45)(32,73,111,46,149), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,78,121,18)(2,75,122,23)(3,80,123,20)(4,77,124,17)(5,74,125,22)(6,79,126,19)(7,76,127,24)(8,73,128,21)(9,96,160,151)(10,93,153,148)(11,90,154,145)(12,95,155,150)(13,92,156,147)(14,89,157,152)(15,94,158,149)(16,91,159,146)(25,136,60,87)(26,133,61,84)(27,130,62,81)(28,135,63,86)(29,132,64,83)(30,129,57,88)(31,134,58,85)(32,131,59,82)(33,109,50,140)(34,106,51,137)(35,111,52,142)(36,108,53,139)(37,105,54,144)(38,110,55,141)(39,107,56,138)(40,112,49,143)(41,100,113,71)(42,97,114,68)(43,102,115,65)(44,99,116,70)(45,104,117,67)(46,101,118,72)(47,98,119,69)(48,103,120,66), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,89)(72,90)(73,124)(74,125)(75,126)(76,127)(77,128)(78,121)(79,122)(80,123)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(97,149)(98,150)(99,151)(100,152)(101,145)(102,146)(103,147)(104,148)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)(113,157)(114,158)(115,159)(116,160)(117,153)(118,154)(119,155)(120,156) );

G=PermutationGroup([[(1,65,83,36,159),(2,37,66,160,84),(3,153,38,85,67),(4,86,154,68,39),(5,69,87,40,155),(6,33,70,156,88),(7,157,34,81,71),(8,82,158,72,35),(9,133,122,54,103),(10,55,134,104,123),(11,97,56,124,135),(12,125,98,136,49),(13,129,126,50,99),(14,51,130,100,127),(15,101,52,128,131),(16,121,102,132,53),(17,138,114,90,63),(18,91,139,64,115),(19,57,92,116,140),(20,117,58,141,93),(21,142,118,94,59),(22,95,143,60,119),(23,61,96,120,144),(24,113,62,137,89),(25,47,74,150,112),(26,151,48,105,75),(27,106,152,76,41),(28,77,107,42,145),(29,43,78,146,108),(30,147,44,109,79),(31,110,148,80,45),(32,73,111,46,149)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,78,121,18),(2,75,122,23),(3,80,123,20),(4,77,124,17),(5,74,125,22),(6,79,126,19),(7,76,127,24),(8,73,128,21),(9,96,160,151),(10,93,153,148),(11,90,154,145),(12,95,155,150),(13,92,156,147),(14,89,157,152),(15,94,158,149),(16,91,159,146),(25,136,60,87),(26,133,61,84),(27,130,62,81),(28,135,63,86),(29,132,64,83),(30,129,57,88),(31,134,58,85),(32,131,59,82),(33,109,50,140),(34,106,51,137),(35,111,52,142),(36,108,53,139),(37,105,54,144),(38,110,55,141),(39,107,56,138),(40,112,49,143),(41,100,113,71),(42,97,114,68),(43,102,115,65),(44,99,116,70),(45,104,117,67),(46,101,118,72),(47,98,119,69),(48,103,120,66)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,17),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,89),(72,90),(73,124),(74,125),(75,126),(76,127),(77,128),(78,121),(79,122),(80,123),(81,137),(82,138),(83,139),(84,140),(85,141),(86,142),(87,143),(88,144),(97,149),(98,150),(99,151),(100,152),(101,145),(102,146),(103,147),(104,148),(105,129),(106,130),(107,131),(108,132),(109,133),(110,134),(111,135),(112,136),(113,157),(114,158),(115,159),(116,160),(117,153),(118,154),(119,155),(120,156)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I 5 8A···8H8I8J8K8L10A10B10C10D10E20A20B20C20D
order122222244444444458···88888101010101020202020
size11112220445555101020410···1020202020444888888

38 irreducible representations

dim1111111111112222444488
type++++++++++++-+
imageC1C2C2C2C2C2C2C2C4C4C4C4D4C4○D4M4(2)C8○D4F5C2×F5C2×F5C4.F5D4.F5D4×F5
kernelC5⋊C8⋊D4C20⋊C8C10.C42D10⋊C8C23.2F5Dic54D4C2×C4.F5C22×C5⋊C8C10.D4D10⋊C4C5×C22⋊C4C2×C5⋊D4C5⋊C8Dic5C2×C10C10C22⋊C4C2×C4C23C22C2C2
# reps1111111122222244121411

Matrix representation of C5⋊C8⋊D4 in GL8(𝔽41)

10000000
01000000
00100000
00010000
000000040
000010040
000001040
000000140
,
382000000
03000000
00100000
00010000
000093200
000093209
000090329
000000329
,
10000000
340000000
00010000
004000000
000000040
000000400
000004000
000040000
,
10000000
01000000
00010000
00100000
000040000
000004000
000000400
000000040

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,40,40,40],[38,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,9,9,9,0,0,0,0,0,32,32,0,0,0,0,0,0,0,0,32,32,0,0,0,0,0,9,9,9],[1,3,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40] >;

C5⋊C8⋊D4 in GAP, Magma, Sage, TeX

C_5\rtimes C_8\rtimes D_4
% in TeX

G:=Group("C5:C8:D4");
// GroupNames label

G:=SmallGroup(320,1031);
// by ID

G=gap.SmallGroup(320,1031);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,219,184,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=a^3,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=b^5,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽