direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D10⋊C8, D10⋊9(C2×C8), (C22×D5)⋊5C8, C10⋊1(C22⋊C8), (C22×C4).12F5, C23.60(C2×F5), C10.12(C22×C8), (C22×C20).18C4, (C23×D5).13C4, (C2×C10).8M4(2), C22.15(D5⋊C8), Dic5.103(C2×D4), (C2×Dic5).257D4, C10.19(C2×M4(2)), C22.10(C4.F5), C22.45(C22×F5), C22.45(C22⋊F5), Dic5.40(C22⋊C4), (C2×Dic5).342C23, (C22×Dic5).270C22, C5⋊1(C2×C22⋊C8), (C22×C5⋊C8)⋊3C2, (C2×C5⋊C8)⋊6C22, (C2×C4×D5).32C4, C2.5(C2×C4.F5), C2.13(C2×D5⋊C8), (C2×C10).13(C2×C8), C2.1(C2×C22⋊F5), C10.3(C2×C22⋊C4), (C2×C4).105(C2×F5), (D5×C22×C4).21C2, (C2×C20).105(C2×C4), (C2×C4×D5).363C22, (C2×C10).58(C22×C4), (C22×C10).58(C2×C4), (C2×C10).48(C22⋊C4), (C2×Dic5).180(C2×C4), (C22×D5).123(C2×C4), SmallGroup(320,1089)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C22×C5⋊C8 — C2×D10⋊C8 |
Generators and relations for C2×D10⋊C8
G = < a,b,c,d | a2=b10=c2=d8=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b7c >
Subgroups: 762 in 202 conjugacy classes, 76 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C23, C23, D5, C10, C10, C2×C8, C22×C4, C22×C4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C22⋊C8, C22×C8, C23×C4, C5⋊C8, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C22⋊C8, C2×C5⋊C8, C2×C5⋊C8, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×C20, C23×D5, D10⋊C8, C22×C5⋊C8, D5×C22×C4, C2×D10⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, F5, C22⋊C8, C2×C22⋊C4, C22×C8, C2×M4(2), C2×F5, C2×C22⋊C8, D5⋊C8, C4.F5, C22⋊F5, C22×F5, D10⋊C8, C2×D5⋊C8, C2×C4.F5, C2×C22⋊F5, C2×D10⋊C8
(1 64)(2 65)(3 66)(4 67)(5 68)(6 69)(7 70)(8 61)(9 62)(10 63)(11 114)(12 115)(13 116)(14 117)(15 118)(16 119)(17 120)(18 111)(19 112)(20 113)(21 55)(22 56)(23 57)(24 58)(25 59)(26 60)(27 51)(28 52)(29 53)(30 54)(31 88)(32 89)(33 90)(34 81)(35 82)(36 83)(37 84)(38 85)(39 86)(40 87)(41 72)(42 73)(43 74)(44 75)(45 76)(46 77)(47 78)(48 79)(49 80)(50 71)(91 147)(92 148)(93 149)(94 150)(95 141)(96 142)(97 143)(98 144)(99 145)(100 146)(101 135)(102 136)(103 137)(104 138)(105 139)(106 140)(107 131)(108 132)(109 133)(110 134)(121 152)(122 153)(123 154)(124 155)(125 156)(126 157)(127 158)(128 159)(129 160)(130 151)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 52)(2 51)(3 60)(4 59)(5 58)(6 57)(7 56)(8 55)(9 54)(10 53)(11 126)(12 125)(13 124)(14 123)(15 122)(16 121)(17 130)(18 129)(19 128)(20 127)(21 61)(22 70)(23 69)(24 68)(25 67)(26 66)(27 65)(28 64)(29 63)(30 62)(31 77)(32 76)(33 75)(34 74)(35 73)(36 72)(37 71)(38 80)(39 79)(40 78)(41 83)(42 82)(43 81)(44 90)(45 89)(46 88)(47 87)(48 86)(49 85)(50 84)(91 136)(92 135)(93 134)(94 133)(95 132)(96 131)(97 140)(98 139)(99 138)(100 137)(101 148)(102 147)(103 146)(104 145)(105 144)(106 143)(107 142)(108 141)(109 150)(110 149)(111 160)(112 159)(113 158)(114 157)(115 156)(116 155)(117 154)(118 153)(119 152)(120 151)
(1 99 37 116 24 105 46 125)(2 96 36 119 25 102 45 128)(3 93 35 112 26 109 44 121)(4 100 34 115 27 106 43 124)(5 97 33 118 28 103 42 127)(6 94 32 111 29 110 41 130)(7 91 31 114 30 107 50 123)(8 98 40 117 21 104 49 126)(9 95 39 120 22 101 48 129)(10 92 38 113 23 108 47 122)(11 54 131 71 154 70 147 88)(12 51 140 74 155 67 146 81)(13 58 139 77 156 64 145 84)(14 55 138 80 157 61 144 87)(15 52 137 73 158 68 143 90)(16 59 136 76 159 65 142 83)(17 56 135 79 160 62 141 86)(18 53 134 72 151 69 150 89)(19 60 133 75 152 66 149 82)(20 57 132 78 153 63 148 85)
G:=sub<Sym(160)| (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,61)(9,62)(10,63)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,51)(28,52)(29,53)(30,54)(31,88)(32,89)(33,90)(34,81)(35,82)(36,83)(37,84)(38,85)(39,86)(40,87)(41,72)(42,73)(43,74)(44,75)(45,76)(46,77)(47,78)(48,79)(49,80)(50,71)(91,147)(92,148)(93,149)(94,150)(95,141)(96,142)(97,143)(98,144)(99,145)(100,146)(101,135)(102,136)(103,137)(104,138)(105,139)(106,140)(107,131)(108,132)(109,133)(110,134)(121,152)(122,153)(123,154)(124,155)(125,156)(126,157)(127,158)(128,159)(129,160)(130,151), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,52)(2,51)(3,60)(4,59)(5,58)(6,57)(7,56)(8,55)(9,54)(10,53)(11,126)(12,125)(13,124)(14,123)(15,122)(16,121)(17,130)(18,129)(19,128)(20,127)(21,61)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,80)(39,79)(40,78)(41,83)(42,82)(43,81)(44,90)(45,89)(46,88)(47,87)(48,86)(49,85)(50,84)(91,136)(92,135)(93,134)(94,133)(95,132)(96,131)(97,140)(98,139)(99,138)(100,137)(101,148)(102,147)(103,146)(104,145)(105,144)(106,143)(107,142)(108,141)(109,150)(110,149)(111,160)(112,159)(113,158)(114,157)(115,156)(116,155)(117,154)(118,153)(119,152)(120,151), (1,99,37,116,24,105,46,125)(2,96,36,119,25,102,45,128)(3,93,35,112,26,109,44,121)(4,100,34,115,27,106,43,124)(5,97,33,118,28,103,42,127)(6,94,32,111,29,110,41,130)(7,91,31,114,30,107,50,123)(8,98,40,117,21,104,49,126)(9,95,39,120,22,101,48,129)(10,92,38,113,23,108,47,122)(11,54,131,71,154,70,147,88)(12,51,140,74,155,67,146,81)(13,58,139,77,156,64,145,84)(14,55,138,80,157,61,144,87)(15,52,137,73,158,68,143,90)(16,59,136,76,159,65,142,83)(17,56,135,79,160,62,141,86)(18,53,134,72,151,69,150,89)(19,60,133,75,152,66,149,82)(20,57,132,78,153,63,148,85)>;
G:=Group( (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,61)(9,62)(10,63)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,111)(19,112)(20,113)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,51)(28,52)(29,53)(30,54)(31,88)(32,89)(33,90)(34,81)(35,82)(36,83)(37,84)(38,85)(39,86)(40,87)(41,72)(42,73)(43,74)(44,75)(45,76)(46,77)(47,78)(48,79)(49,80)(50,71)(91,147)(92,148)(93,149)(94,150)(95,141)(96,142)(97,143)(98,144)(99,145)(100,146)(101,135)(102,136)(103,137)(104,138)(105,139)(106,140)(107,131)(108,132)(109,133)(110,134)(121,152)(122,153)(123,154)(124,155)(125,156)(126,157)(127,158)(128,159)(129,160)(130,151), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,52)(2,51)(3,60)(4,59)(5,58)(6,57)(7,56)(8,55)(9,54)(10,53)(11,126)(12,125)(13,124)(14,123)(15,122)(16,121)(17,130)(18,129)(19,128)(20,127)(21,61)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,80)(39,79)(40,78)(41,83)(42,82)(43,81)(44,90)(45,89)(46,88)(47,87)(48,86)(49,85)(50,84)(91,136)(92,135)(93,134)(94,133)(95,132)(96,131)(97,140)(98,139)(99,138)(100,137)(101,148)(102,147)(103,146)(104,145)(105,144)(106,143)(107,142)(108,141)(109,150)(110,149)(111,160)(112,159)(113,158)(114,157)(115,156)(116,155)(117,154)(118,153)(119,152)(120,151), (1,99,37,116,24,105,46,125)(2,96,36,119,25,102,45,128)(3,93,35,112,26,109,44,121)(4,100,34,115,27,106,43,124)(5,97,33,118,28,103,42,127)(6,94,32,111,29,110,41,130)(7,91,31,114,30,107,50,123)(8,98,40,117,21,104,49,126)(9,95,39,120,22,101,48,129)(10,92,38,113,23,108,47,122)(11,54,131,71,154,70,147,88)(12,51,140,74,155,67,146,81)(13,58,139,77,156,64,145,84)(14,55,138,80,157,61,144,87)(15,52,137,73,158,68,143,90)(16,59,136,76,159,65,142,83)(17,56,135,79,160,62,141,86)(18,53,134,72,151,69,150,89)(19,60,133,75,152,66,149,82)(20,57,132,78,153,63,148,85) );
G=PermutationGroup([[(1,64),(2,65),(3,66),(4,67),(5,68),(6,69),(7,70),(8,61),(9,62),(10,63),(11,114),(12,115),(13,116),(14,117),(15,118),(16,119),(17,120),(18,111),(19,112),(20,113),(21,55),(22,56),(23,57),(24,58),(25,59),(26,60),(27,51),(28,52),(29,53),(30,54),(31,88),(32,89),(33,90),(34,81),(35,82),(36,83),(37,84),(38,85),(39,86),(40,87),(41,72),(42,73),(43,74),(44,75),(45,76),(46,77),(47,78),(48,79),(49,80),(50,71),(91,147),(92,148),(93,149),(94,150),(95,141),(96,142),(97,143),(98,144),(99,145),(100,146),(101,135),(102,136),(103,137),(104,138),(105,139),(106,140),(107,131),(108,132),(109,133),(110,134),(121,152),(122,153),(123,154),(124,155),(125,156),(126,157),(127,158),(128,159),(129,160),(130,151)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,52),(2,51),(3,60),(4,59),(5,58),(6,57),(7,56),(8,55),(9,54),(10,53),(11,126),(12,125),(13,124),(14,123),(15,122),(16,121),(17,130),(18,129),(19,128),(20,127),(21,61),(22,70),(23,69),(24,68),(25,67),(26,66),(27,65),(28,64),(29,63),(30,62),(31,77),(32,76),(33,75),(34,74),(35,73),(36,72),(37,71),(38,80),(39,79),(40,78),(41,83),(42,82),(43,81),(44,90),(45,89),(46,88),(47,87),(48,86),(49,85),(50,84),(91,136),(92,135),(93,134),(94,133),(95,132),(96,131),(97,140),(98,139),(99,138),(100,137),(101,148),(102,147),(103,146),(104,145),(105,144),(106,143),(107,142),(108,141),(109,150),(110,149),(111,160),(112,159),(113,158),(114,157),(115,156),(116,155),(117,154),(118,153),(119,152),(120,151)], [(1,99,37,116,24,105,46,125),(2,96,36,119,25,102,45,128),(3,93,35,112,26,109,44,121),(4,100,34,115,27,106,43,124),(5,97,33,118,28,103,42,127),(6,94,32,111,29,110,41,130),(7,91,31,114,30,107,50,123),(8,98,40,117,21,104,49,126),(9,95,39,120,22,101,48,129),(10,92,38,113,23,108,47,122),(11,54,131,71,154,70,147,88),(12,51,140,74,155,67,146,81),(13,58,139,77,156,64,145,84),(14,55,138,80,157,61,144,87),(15,52,137,73,158,68,143,90),(16,59,136,76,159,65,142,83),(17,56,135,79,160,62,141,86),(18,53,134,72,151,69,150,89),(19,60,133,75,152,66,149,82),(20,57,132,78,153,63,148,85)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 5 | 8A | ··· | 8P | 10A | ··· | 10G | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 5 | ··· | 5 | 4 | 10 | ··· | 10 | 4 | ··· | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | D4 | M4(2) | F5 | C2×F5 | C2×F5 | D5⋊C8 | C4.F5 | C22⋊F5 |
kernel | C2×D10⋊C8 | D10⋊C8 | C22×C5⋊C8 | D5×C22×C4 | C2×C4×D5 | C22×C20 | C23×D5 | C22×D5 | C2×Dic5 | C2×C10 | C22×C4 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 4 | 2 | 1 | 4 | 2 | 2 | 16 | 4 | 4 | 1 | 2 | 1 | 4 | 4 | 4 |
Matrix representation of C2×D10⋊C8 ►in GL8(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 40 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
1 | 39 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 25 | 32 | 17 |
0 | 0 | 0 | 0 | 23 | 1 | 8 | 8 |
0 | 0 | 0 | 0 | 40 | 33 | 33 | 40 |
0 | 0 | 0 | 0 | 24 | 24 | 9 | 16 |
G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,1,1,1,1,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0],[1,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,40,40,40],[1,1,0,0,0,0,0,0,39,40,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,39,40,0,0,0,0,0,0,0,0,32,23,40,24,0,0,0,0,25,1,33,24,0,0,0,0,32,8,33,9,0,0,0,0,17,8,40,16] >;
C2×D10⋊C8 in GAP, Magma, Sage, TeX
C_2\times D_{10}\rtimes C_8
% in TeX
G:=Group("C2xD10:C8");
// GroupNames label
G:=SmallGroup(320,1089);
// by ID
G=gap.SmallGroup(320,1089);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,184,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^10=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^7*c>;
// generators/relations