Copied to
clipboard

G = C2×C4.F5order 160 = 25·5

Direct product of C2 and C4.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4.F5, C101M4(2), Dic5.10C23, C5⋊C81C22, (C2×C4).7F5, (C2×C20).6C4, (C4×D5).4C4, C51(C2×M4(2)), C4.12(C2×F5), C20.12(C2×C4), C2.4(C22×F5), D10.13(C2×C4), C10.2(C22×C4), (C22×D5).8C4, C22.16(C2×F5), Dic5.15(C2×C4), (C4×D5).29C22, (C2×Dic5).55C22, (C2×C5⋊C8)⋊3C2, (C2×C4×D5).13C2, (C2×C10).14(C2×C4), SmallGroup(160,201)

Series: Derived Chief Lower central Upper central

C1C10 — C2×C4.F5
C1C5C10Dic5C5⋊C8C2×C5⋊C8 — C2×C4.F5
C5C10 — C2×C4.F5
C1C22C2×C4

Generators and relations for C2×C4.F5
 G = < a,b,c,d | a2=b4=c5=1, d4=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 196 in 68 conjugacy classes, 38 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, D5, C10, C10, C2×C8, M4(2), C22×C4, Dic5, C20, D10, D10, C2×C10, C2×M4(2), C5⋊C8, C4×D5, C2×Dic5, C2×C20, C22×D5, C4.F5, C2×C5⋊C8, C2×C4×D5, C2×C4.F5
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, F5, C2×M4(2), C2×F5, C4.F5, C22×F5, C2×C4.F5

Character table of C2×C4.F5

 class 12A2B2C2D2E4A4B4C4D4E4F58A8B8C8D8E8F8G8H10A10B10C20A20B20C20D
 size 11111010225555410101010101010104444444
ρ11111111111111111111111111111    trivial
ρ211-1-11-1-11-1-1111111-1-1-1-111-1-1-11-11    linear of order 2
ρ31111-1-1-1-111111-111-1-111-1111-1-1-1-1    linear of order 2
ρ411-1-1-111-1-1-1111-11111-1-1-11-1-11-11-1    linear of order 2
ρ51111-1-1-1-1111111-1-111-1-11111-1-1-1-1    linear of order 2
ρ611-1-1-111-1-1-11111-1-1-1-11111-1-11-11-1    linear of order 2
ρ71111111111111-1-1-1-1-1-1-1-11111111    linear of order 2
ρ811-1-11-1-11-1-1111-1-1-11111-11-1-1-11-11    linear of order 2
ρ9111111-1-1-1-1-1-11-i-iii-i-iii111-1-1-1-1    linear of order 4
ρ101111-1-111-1-1-1-11-ii-ii-ii-ii1111111    linear of order 4
ρ11111111-1-1-1-1-1-11ii-i-iii-i-i111-1-1-1-1    linear of order 4
ρ121111-1-111-1-1-1-11i-ii-ii-ii-i1111111    linear of order 4
ρ1311-1-1-11-1111-1-11-ii-i-ii-iii1-1-1-11-11    linear of order 4
ρ1411-1-11-11-111-1-11-i-ii-iii-ii1-1-11-11-1    linear of order 4
ρ1511-1-1-11-1111-1-11i-iii-ii-i-i1-1-1-11-11    linear of order 4
ρ1611-1-11-11-111-1-11ii-ii-i-ii-i1-1-11-11-1    linear of order 4
ρ172-22-20000-2i2i2i-2i200000000-2-220000    complex lifted from M4(2)
ρ182-2-220000-2i2i-2i2i200000000-22-20000    complex lifted from M4(2)
ρ192-22-200002i-2i-2i2i200000000-2-220000    complex lifted from M4(2)
ρ202-2-2200002i-2i2i-2i200000000-22-20000    complex lifted from M4(2)
ρ2144-4-400-440000-100000000-1111-11-1    orthogonal lifted from C2×F5
ρ2244-4-4004-40000-100000000-111-11-11    orthogonal lifted from C2×F5
ρ23444400440000-100000000-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ24444400-4-40000-100000000-1-1-11111    orthogonal lifted from C2×F5
ρ254-44-400000000-10000000011-1--5--5-5-5    complex lifted from C4.F5
ρ264-44-400000000-10000000011-1-5-5--5--5    complex lifted from C4.F5
ρ274-4-4400000000-1000000001-11-5--5--5-5    complex lifted from C4.F5
ρ284-4-4400000000-1000000001-11--5-5-5--5    complex lifted from C4.F5

Smallest permutation representation of C2×C4.F5
On 80 points
Generators in S80
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 65)(9 62)(10 63)(11 64)(12 57)(13 58)(14 59)(15 60)(16 61)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 49)(24 50)(25 36)(26 37)(27 38)(28 39)(29 40)(30 33)(31 34)(32 35)(41 76)(42 77)(43 78)(44 79)(45 80)(46 73)(47 74)(48 75)
(1 7 5 3)(2 4 6 8)(9 52 13 56)(10 49 14 53)(11 54 15 50)(12 51 16 55)(17 61 21 57)(18 58 22 62)(19 63 23 59)(20 60 24 64)(25 43 29 47)(26 48 30 44)(27 45 31 41)(28 42 32 46)(33 79 37 75)(34 76 38 80)(35 73 39 77)(36 78 40 74)(65 67 69 71)(66 72 70 68)
(1 57 35 75 19)(2 76 58 20 36)(3 21 77 37 59)(4 38 22 60 78)(5 61 39 79 23)(6 80 62 24 40)(7 17 73 33 63)(8 34 18 64 74)(9 50 29 71 45)(10 72 51 46 30)(11 47 65 31 52)(12 32 48 53 66)(13 54 25 67 41)(14 68 55 42 26)(15 43 69 27 56)(16 28 44 49 70)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,65)(9,62)(10,63)(11,64)(12,57)(13,58)(14,59)(15,60)(16,61)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(41,76)(42,77)(43,78)(44,79)(45,80)(46,73)(47,74)(48,75), (1,7,5,3)(2,4,6,8)(9,52,13,56)(10,49,14,53)(11,54,15,50)(12,51,16,55)(17,61,21,57)(18,58,22,62)(19,63,23,59)(20,60,24,64)(25,43,29,47)(26,48,30,44)(27,45,31,41)(28,42,32,46)(33,79,37,75)(34,76,38,80)(35,73,39,77)(36,78,40,74)(65,67,69,71)(66,72,70,68), (1,57,35,75,19)(2,76,58,20,36)(3,21,77,37,59)(4,38,22,60,78)(5,61,39,79,23)(6,80,62,24,40)(7,17,73,33,63)(8,34,18,64,74)(9,50,29,71,45)(10,72,51,46,30)(11,47,65,31,52)(12,32,48,53,66)(13,54,25,67,41)(14,68,55,42,26)(15,43,69,27,56)(16,28,44,49,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,65)(9,62)(10,63)(11,64)(12,57)(13,58)(14,59)(15,60)(16,61)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(41,76)(42,77)(43,78)(44,79)(45,80)(46,73)(47,74)(48,75), (1,7,5,3)(2,4,6,8)(9,52,13,56)(10,49,14,53)(11,54,15,50)(12,51,16,55)(17,61,21,57)(18,58,22,62)(19,63,23,59)(20,60,24,64)(25,43,29,47)(26,48,30,44)(27,45,31,41)(28,42,32,46)(33,79,37,75)(34,76,38,80)(35,73,39,77)(36,78,40,74)(65,67,69,71)(66,72,70,68), (1,57,35,75,19)(2,76,58,20,36)(3,21,77,37,59)(4,38,22,60,78)(5,61,39,79,23)(6,80,62,24,40)(7,17,73,33,63)(8,34,18,64,74)(9,50,29,71,45)(10,72,51,46,30)(11,47,65,31,52)(12,32,48,53,66)(13,54,25,67,41)(14,68,55,42,26)(15,43,69,27,56)(16,28,44,49,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,65),(9,62),(10,63),(11,64),(12,57),(13,58),(14,59),(15,60),(16,61),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,49),(24,50),(25,36),(26,37),(27,38),(28,39),(29,40),(30,33),(31,34),(32,35),(41,76),(42,77),(43,78),(44,79),(45,80),(46,73),(47,74),(48,75)], [(1,7,5,3),(2,4,6,8),(9,52,13,56),(10,49,14,53),(11,54,15,50),(12,51,16,55),(17,61,21,57),(18,58,22,62),(19,63,23,59),(20,60,24,64),(25,43,29,47),(26,48,30,44),(27,45,31,41),(28,42,32,46),(33,79,37,75),(34,76,38,80),(35,73,39,77),(36,78,40,74),(65,67,69,71),(66,72,70,68)], [(1,57,35,75,19),(2,76,58,20,36),(3,21,77,37,59),(4,38,22,60,78),(5,61,39,79,23),(6,80,62,24,40),(7,17,73,33,63),(8,34,18,64,74),(9,50,29,71,45),(10,72,51,46,30),(11,47,65,31,52),(12,32,48,53,66),(13,54,25,67,41),(14,68,55,42,26),(15,43,69,27,56),(16,28,44,49,70)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

C2×C4.F5 is a maximal subgroup of
C20.C42  C20.10C42  M4(2)⋊4F5  C203M4(2)  C42.14F5  C5⋊C8⋊D4  Dic5⋊M4(2)  D10.C42  D102M4(2)  C20⋊M4(2)  C4⋊C4.9F5  M4(2).1F5  D1010M4(2)  (C2×D4).8F5  (C2×Q8).5F5  D4⋊F5⋊C2  Dic5.22C24
C2×C4.F5 is a maximal quotient of
C42.12F5  C203M4(2)  C42.15F5  C5⋊C8⋊D4  C20⋊M4(2)  C20.M4(2)  D1010M4(2)  C20.30M4(2)

Matrix representation of C2×C4.F5 in GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
3200000
190000
00727014
000342714
001427340
00140277
,
100000
010000
0040100
0040010
0040001
0040000
,
9390000
36320000
0032323824
0029153515
002662612
0017399

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,1,0,0,0,0,0,9,0,0,0,0,0,0,7,0,14,14,0,0,27,34,27,0,0,0,0,27,34,27,0,0,14,14,0,7],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,40,40,40,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[9,36,0,0,0,0,39,32,0,0,0,0,0,0,32,29,26,17,0,0,32,15,6,3,0,0,38,35,26,9,0,0,24,15,12,9] >;

C2×C4.F5 in GAP, Magma, Sage, TeX

C_2\times C_4.F_5
% in TeX

G:=Group("C2xC4.F5");
// GroupNames label

G:=SmallGroup(160,201);
// by ID

G=gap.SmallGroup(160,201);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,362,86,69,2309,599]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^5=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Character table of C2×C4.F5 in TeX

׿
×
𝔽