Extensions 1→N→G→Q→1 with N=C16 and Q=Dic5

Direct product G=N×Q with N=C16 and Q=Dic5

Semidirect products G=N:Q with N=C16 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C161Dic5 = C40.Q8φ: Dic5/C5C4 ⊆ Aut C16804C16:1Dic5320,71
C162Dic5 = C80⋊C4φ: Dic5/C5C4 ⊆ Aut C16804C16:2Dic5320,70
C163Dic5 = C8013C4φ: Dic5/C10C2 ⊆ Aut C16320C16:3Dic5320,62
C164Dic5 = C8014C4φ: Dic5/C10C2 ⊆ Aut C16320C16:4Dic5320,63
C165Dic5 = C8017C4φ: Dic5/C10C2 ⊆ Aut C16320C16:5Dic5320,60

Non-split extensions G=N.Q with N=C16 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C16.1Dic5 = C80.6C4φ: Dic5/C10C2 ⊆ Aut C161602C16.1Dic5320,64
C16.2Dic5 = C80.9C4φ: Dic5/C10C2 ⊆ Aut C161602C16.2Dic5320,57
C16.3Dic5 = C52C64central extension (φ=1)3202C16.3Dic5320,1
C16.4Dic5 = C2×C52C32central extension (φ=1)320C16.4Dic5320,56