Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊C4⋊D5

Direct product G=N×Q with N=C2 and Q=C4⋊C4⋊D5
dρLabelID
C2×C4⋊C4⋊D5160C2xC4:C4:D5320,1184


Non-split extensions G=N.Q with N=C2 and Q=C4⋊C4⋊D5
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊C4⋊D5) = C52(C425C4)central extension (φ=1)320C2.1(C4:C4:D5)320,278
C2.2(C4⋊C4⋊D5) = C4⋊Dic515C4central extension (φ=1)320C2.2(C4:C4:D5)320,281
C2.3(C4⋊C4⋊D5) = C10.54(C4×D4)central extension (φ=1)160C2.3(C4:C4:D5)320,296
C2.4(C4⋊C4⋊D5) = C10.55(C4×D4)central extension (φ=1)160C2.4(C4:C4:D5)320,297
C2.5(C4⋊C4⋊D5) = C10.97(C4×D4)central extension (φ=1)320C2.5(C4:C4:D5)320,605
C2.6(C4⋊C4⋊D5) = C4⋊C45Dic5central extension (φ=1)320C2.6(C4:C4:D5)320,608
C2.7(C4⋊C4⋊D5) = C10.90(C4×D4)central extension (φ=1)160C2.7(C4:C4:D5)320,617
C2.8(C4⋊C4⋊D5) = (C2×C4).Dic10central stem extension (φ=1)320C2.8(C4:C4:D5)320,287
C2.9(C4⋊C4⋊D5) = (C22×C4).D10central stem extension (φ=1)320C2.9(C4:C4:D5)320,289
C2.10(C4⋊C4⋊D5) = (C2×C4).21D20central stem extension (φ=1)160C2.10(C4:C4:D5)320,301
C2.11(C4⋊C4⋊D5) = C10.(C4⋊D4)central stem extension (φ=1)160C2.11(C4:C4:D5)320,302
C2.12(C4⋊C4⋊D5) = (C2×C20).288D4central stem extension (φ=1)320C2.12(C4:C4:D5)320,609
C2.13(C4⋊C4⋊D5) = (C2×C20).55D4central stem extension (φ=1)320C2.13(C4:C4:D5)320,613
C2.14(C4⋊C4⋊D5) = (C2×C20).290D4central stem extension (φ=1)160C2.14(C4:C4:D5)320,620
C2.15(C4⋊C4⋊D5) = (C2×C20).56D4central stem extension (φ=1)160C2.15(C4:C4:D5)320,621

׿
×
𝔽