Copied to
clipboard

G = (C2×C20).56D4order 320 = 26·5

30th non-split extension by C2×C20 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C20).56D4, (C2×C4).45D20, (C22×D5).5Q8, C22.51(Q8×D5), (C2×Dic5).70D4, C22.250(D4×D5), C10.63(C4⋊D4), C2.26(C4⋊D20), C2.11(C207D4), C53(C23.Q8), C2.9(D103Q8), C22.130(C2×D20), (C22×C4).106D10, C10.51(C22⋊Q8), C2.23(D10⋊Q8), C2.17(D102Q8), (C22×C20).69C22, (C23×D5).23C22, C23.383(C22×D5), C10.10C4221C2, C10.30(C422C2), C2.13(Dic5⋊D4), C22.111(C4○D20), (C22×C10).358C23, C22.54(Q82D5), C22.105(D42D5), (C22×Dic5).63C22, (C2×C4⋊C4)⋊12D5, (C10×C4⋊C4)⋊23C2, (C2×C4⋊Dic5)⋊14C2, (C2×C10).86(C2×Q8), (C2×C10).338(C2×D4), (C2×C4).44(C5⋊D4), C2.15(C4⋊C4⋊D5), (C2×C10).87(C4○D4), (C2×C10.D4)⋊42C2, C22.143(C2×C5⋊D4), (C2×D10⋊C4).26C2, SmallGroup(320,621)

Series: Derived Chief Lower central Upper central

C1C22×C10 — (C2×C20).56D4
C1C5C10C2×C10C22×C10C23×D5C2×D10⋊C4 — (C2×C20).56D4
C5C22×C10 — (C2×C20).56D4
C1C23C2×C4⋊C4

Generators and relations for (C2×C20).56D4
 G = < a,b,c,d | a2=b20=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=ab-1, dcd=ac-1 >

Subgroups: 774 in 186 conjugacy classes, 63 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C23.Q8, C10.D4, C4⋊Dic5, D10⋊C4, C5×C4⋊C4, C22×Dic5, C22×C20, C23×D5, C10.10C42, C2×C10.D4, C2×C4⋊Dic5, C2×D10⋊C4, C10×C4⋊C4, (C2×C20).56D4
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C4⋊D4, C22⋊Q8, C422C2, D20, C5⋊D4, C22×D5, C23.Q8, C2×D20, C4○D20, D4×D5, D42D5, Q8×D5, Q82D5, C2×C5⋊D4, C4⋊D20, D10⋊Q8, D102Q8, C4⋊C4⋊D5, C207D4, Dic5⋊D4, D103Q8, (C2×C20).56D4

Smallest permutation representation of (C2×C20).56D4
On 160 points
Generators in S160
(1 60)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)(21 64)(22 65)(23 66)(24 67)(25 68)(26 69)(27 70)(28 71)(29 72)(30 73)(31 74)(32 75)(33 76)(34 77)(35 78)(36 79)(37 80)(38 61)(39 62)(40 63)(81 154)(82 155)(83 156)(84 157)(85 158)(86 159)(87 160)(88 141)(89 142)(90 143)(91 144)(92 145)(93 146)(94 147)(95 148)(96 149)(97 150)(98 151)(99 152)(100 153)(101 137)(102 138)(103 139)(104 140)(105 121)(106 122)(107 123)(108 124)(109 125)(110 126)(111 127)(112 128)(113 129)(114 130)(115 131)(116 132)(117 133)(118 134)(119 135)(120 136)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 96 23 119)(2 95 24 118)(3 94 25 117)(4 93 26 116)(5 92 27 115)(6 91 28 114)(7 90 29 113)(8 89 30 112)(9 88 31 111)(10 87 32 110)(11 86 33 109)(12 85 34 108)(13 84 35 107)(14 83 36 106)(15 82 37 105)(16 81 38 104)(17 100 39 103)(18 99 40 102)(19 98 21 101)(20 97 22 120)(41 148 67 134)(42 147 68 133)(43 146 69 132)(44 145 70 131)(45 144 71 130)(46 143 72 129)(47 142 73 128)(48 141 74 127)(49 160 75 126)(50 159 76 125)(51 158 77 124)(52 157 78 123)(53 156 79 122)(54 155 80 121)(55 154 61 140)(56 153 62 139)(57 152 63 138)(58 151 64 137)(59 150 65 136)(60 149 66 135)
(2 59)(3 19)(4 57)(5 17)(6 55)(7 15)(8 53)(9 13)(10 51)(12 49)(14 47)(16 45)(18 43)(20 41)(21 25)(22 67)(24 65)(26 63)(27 39)(28 61)(29 37)(30 79)(31 35)(32 77)(34 75)(36 73)(38 71)(40 69)(42 58)(44 56)(46 54)(48 52)(62 70)(64 68)(72 80)(74 78)(81 114)(82 129)(83 112)(84 127)(85 110)(86 125)(87 108)(88 123)(89 106)(90 121)(91 104)(92 139)(93 102)(94 137)(95 120)(96 135)(97 118)(98 133)(99 116)(100 131)(101 147)(103 145)(105 143)(107 141)(109 159)(111 157)(113 155)(115 153)(117 151)(119 149)(122 142)(124 160)(126 158)(128 156)(130 154)(132 152)(134 150)(136 148)(138 146)(140 144)

G:=sub<Sym(160)| (1,60)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,64)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,71)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,61)(39,62)(40,63)(81,154)(82,155)(83,156)(84,157)(85,158)(86,159)(87,160)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,151)(99,152)(100,153)(101,137)(102,138)(103,139)(104,140)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,127)(112,128)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,96,23,119)(2,95,24,118)(3,94,25,117)(4,93,26,116)(5,92,27,115)(6,91,28,114)(7,90,29,113)(8,89,30,112)(9,88,31,111)(10,87,32,110)(11,86,33,109)(12,85,34,108)(13,84,35,107)(14,83,36,106)(15,82,37,105)(16,81,38,104)(17,100,39,103)(18,99,40,102)(19,98,21,101)(20,97,22,120)(41,148,67,134)(42,147,68,133)(43,146,69,132)(44,145,70,131)(45,144,71,130)(46,143,72,129)(47,142,73,128)(48,141,74,127)(49,160,75,126)(50,159,76,125)(51,158,77,124)(52,157,78,123)(53,156,79,122)(54,155,80,121)(55,154,61,140)(56,153,62,139)(57,152,63,138)(58,151,64,137)(59,150,65,136)(60,149,66,135), (2,59)(3,19)(4,57)(5,17)(6,55)(7,15)(8,53)(9,13)(10,51)(12,49)(14,47)(16,45)(18,43)(20,41)(21,25)(22,67)(24,65)(26,63)(27,39)(28,61)(29,37)(30,79)(31,35)(32,77)(34,75)(36,73)(38,71)(40,69)(42,58)(44,56)(46,54)(48,52)(62,70)(64,68)(72,80)(74,78)(81,114)(82,129)(83,112)(84,127)(85,110)(86,125)(87,108)(88,123)(89,106)(90,121)(91,104)(92,139)(93,102)(94,137)(95,120)(96,135)(97,118)(98,133)(99,116)(100,131)(101,147)(103,145)(105,143)(107,141)(109,159)(111,157)(113,155)(115,153)(117,151)(119,149)(122,142)(124,160)(126,158)(128,156)(130,154)(132,152)(134,150)(136,148)(138,146)(140,144)>;

G:=Group( (1,60)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,64)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,71)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,61)(39,62)(40,63)(81,154)(82,155)(83,156)(84,157)(85,158)(86,159)(87,160)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,151)(99,152)(100,153)(101,137)(102,138)(103,139)(104,140)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,127)(112,128)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,96,23,119)(2,95,24,118)(3,94,25,117)(4,93,26,116)(5,92,27,115)(6,91,28,114)(7,90,29,113)(8,89,30,112)(9,88,31,111)(10,87,32,110)(11,86,33,109)(12,85,34,108)(13,84,35,107)(14,83,36,106)(15,82,37,105)(16,81,38,104)(17,100,39,103)(18,99,40,102)(19,98,21,101)(20,97,22,120)(41,148,67,134)(42,147,68,133)(43,146,69,132)(44,145,70,131)(45,144,71,130)(46,143,72,129)(47,142,73,128)(48,141,74,127)(49,160,75,126)(50,159,76,125)(51,158,77,124)(52,157,78,123)(53,156,79,122)(54,155,80,121)(55,154,61,140)(56,153,62,139)(57,152,63,138)(58,151,64,137)(59,150,65,136)(60,149,66,135), (2,59)(3,19)(4,57)(5,17)(6,55)(7,15)(8,53)(9,13)(10,51)(12,49)(14,47)(16,45)(18,43)(20,41)(21,25)(22,67)(24,65)(26,63)(27,39)(28,61)(29,37)(30,79)(31,35)(32,77)(34,75)(36,73)(38,71)(40,69)(42,58)(44,56)(46,54)(48,52)(62,70)(64,68)(72,80)(74,78)(81,114)(82,129)(83,112)(84,127)(85,110)(86,125)(87,108)(88,123)(89,106)(90,121)(91,104)(92,139)(93,102)(94,137)(95,120)(96,135)(97,118)(98,133)(99,116)(100,131)(101,147)(103,145)(105,143)(107,141)(109,159)(111,157)(113,155)(115,153)(117,151)(119,149)(122,142)(124,160)(126,158)(128,156)(130,154)(132,152)(134,150)(136,148)(138,146)(140,144) );

G=PermutationGroup([[(1,60),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59),(21,64),(22,65),(23,66),(24,67),(25,68),(26,69),(27,70),(28,71),(29,72),(30,73),(31,74),(32,75),(33,76),(34,77),(35,78),(36,79),(37,80),(38,61),(39,62),(40,63),(81,154),(82,155),(83,156),(84,157),(85,158),(86,159),(87,160),(88,141),(89,142),(90,143),(91,144),(92,145),(93,146),(94,147),(95,148),(96,149),(97,150),(98,151),(99,152),(100,153),(101,137),(102,138),(103,139),(104,140),(105,121),(106,122),(107,123),(108,124),(109,125),(110,126),(111,127),(112,128),(113,129),(114,130),(115,131),(116,132),(117,133),(118,134),(119,135),(120,136)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,96,23,119),(2,95,24,118),(3,94,25,117),(4,93,26,116),(5,92,27,115),(6,91,28,114),(7,90,29,113),(8,89,30,112),(9,88,31,111),(10,87,32,110),(11,86,33,109),(12,85,34,108),(13,84,35,107),(14,83,36,106),(15,82,37,105),(16,81,38,104),(17,100,39,103),(18,99,40,102),(19,98,21,101),(20,97,22,120),(41,148,67,134),(42,147,68,133),(43,146,69,132),(44,145,70,131),(45,144,71,130),(46,143,72,129),(47,142,73,128),(48,141,74,127),(49,160,75,126),(50,159,76,125),(51,158,77,124),(52,157,78,123),(53,156,79,122),(54,155,80,121),(55,154,61,140),(56,153,62,139),(57,152,63,138),(58,151,64,137),(59,150,65,136),(60,149,66,135)], [(2,59),(3,19),(4,57),(5,17),(6,55),(7,15),(8,53),(9,13),(10,51),(12,49),(14,47),(16,45),(18,43),(20,41),(21,25),(22,67),(24,65),(26,63),(27,39),(28,61),(29,37),(30,79),(31,35),(32,77),(34,75),(36,73),(38,71),(40,69),(42,58),(44,56),(46,54),(48,52),(62,70),(64,68),(72,80),(74,78),(81,114),(82,129),(83,112),(84,127),(85,110),(86,125),(87,108),(88,123),(89,106),(90,121),(91,104),(92,139),(93,102),(94,137),(95,120),(96,135),(97,118),(98,133),(99,116),(100,131),(101,147),(103,145),(105,143),(107,141),(109,159),(111,157),(113,155),(115,153),(117,151),(119,149),(122,142),(124,160),(126,158),(128,156),(130,154),(132,152),(134,150),(136,148),(138,146),(140,144)]])

62 conjugacy classes

class 1 2A···2G2H2I4A···4F4G···4L5A5B10A···10N20A···20X
order12···2224···44···45510···1020···20
size11···120204···420···20222···24···4

62 irreducible representations

dim1111112222222224444
type++++++++-++++--+
imageC1C2C2C2C2C2D4D4Q8D5C4○D4D10D20C5⋊D4C4○D20D4×D5D42D5Q8×D5Q82D5
kernel(C2×C20).56D4C10.10C42C2×C10.D4C2×C4⋊Dic5C2×D10⋊C4C10×C4⋊C4C2×Dic5C2×C20C22×D5C2×C4⋊C4C2×C10C22×C4C2×C4C2×C4C22C22C22C22C22
# reps1111312422668882222

Matrix representation of (C2×C20).56D4 in GL6(𝔽41)

4000000
0400000
001000
000100
0000400
0000040
,
35390000
3960000
0014200
00253000
000090
0000032
,
010000
4000000
0031800
0043800
0000040
0000400
,
100000
010000
0034100
0034700
000010
0000040

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,39,0,0,0,0,39,6,0,0,0,0,0,0,14,25,0,0,0,0,2,30,0,0,0,0,0,0,9,0,0,0,0,0,0,32],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,3,4,0,0,0,0,18,38,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,34,0,0,0,0,1,7,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

(C2×C20).56D4 in GAP, Magma, Sage, TeX

(C_2\times C_{20})._{56}D_4
% in TeX

G:=Group("(C2xC20).56D4");
// GroupNames label

G:=SmallGroup(320,621);
// by ID

G=gap.SmallGroup(320,621);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,254,387,184,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=a*b^-1,d*c*d=a*c^-1>;
// generators/relations

׿
×
𝔽