Copied to
clipboard

G = C2×C4⋊C4⋊D5order 320 = 26·5

Direct product of C2 and C4⋊C4⋊D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4⋊C4⋊D5, C4⋊C441D10, (C2×C10).56C24, C4⋊Dic554C22, C103(C422C2), (C2×C20).617C23, (C4×Dic5)⋊76C22, (C22×C4).181D10, C22.90(C23×D5), C22.78(C4○D20), C10.D469C22, (C2×Dic5).17C23, (C22×D5).14C23, (C23×D5).34C22, C23.331(C22×D5), D10⋊C4.95C22, C22.75(D42D5), (C22×C20).360C22, (C22×C10).405C23, C22.37(Q82D5), (C22×Dic5).83C22, (C2×C4⋊C4)⋊21D5, (C10×C4⋊C4)⋊18C2, C53(C2×C422C2), (C2×C4×Dic5)⋊33C2, (C5×C4⋊C4)⋊49C22, (C2×C4⋊Dic5)⋊22C2, C10.23(C2×C4○D4), C2.25(C2×C4○D20), C2.8(C2×Q82D5), C2.16(C2×D42D5), (C2×C10.D4)⋊45C2, (C2×C4).144(C22×D5), (C2×D10⋊C4).28C2, (C2×C10).108(C4○D4), SmallGroup(320,1184)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C4⋊C4⋊D5
C1C5C10C2×C10C22×D5C23×D5C2×D10⋊C4 — C2×C4⋊C4⋊D5
C5C2×C10 — C2×C4⋊C4⋊D5
C1C23C2×C4⋊C4

Generators and relations for C2×C4⋊C4⋊D5
 G = < a,b,c,d,e | a2=b4=c4=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, ebe=bc2, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 846 in 246 conjugacy classes, 111 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C422C2, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C422C2, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C5×C4⋊C4, C22×Dic5, C22×C20, C23×D5, C4⋊C4⋊D5, C2×C4×Dic5, C2×C10.D4, C2×C4⋊Dic5, C2×D10⋊C4, C10×C4⋊C4, C2×C4⋊C4⋊D5
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C422C2, C2×C4○D4, C22×D5, C2×C422C2, C4○D20, D42D5, Q82D5, C23×D5, C4⋊C4⋊D5, C2×C4○D20, C2×D42D5, C2×Q82D5, C2×C4⋊C4⋊D5

Smallest permutation representation of C2×C4⋊C4⋊D5
On 160 points
Generators in S160
(1 86)(2 87)(3 88)(4 89)(5 90)(6 81)(7 82)(8 83)(9 84)(10 85)(11 96)(12 97)(13 98)(14 99)(15 100)(16 91)(17 92)(18 93)(19 94)(20 95)(21 106)(22 107)(23 108)(24 109)(25 110)(26 101)(27 102)(28 103)(29 104)(30 105)(31 116)(32 117)(33 118)(34 119)(35 120)(36 111)(37 112)(38 113)(39 114)(40 115)(41 126)(42 127)(43 128)(44 129)(45 130)(46 121)(47 122)(48 123)(49 124)(50 125)(51 136)(52 137)(53 138)(54 139)(55 140)(56 131)(57 132)(58 133)(59 134)(60 135)(61 146)(62 147)(63 148)(64 149)(65 150)(66 141)(67 142)(68 143)(69 144)(70 145)(71 156)(72 157)(73 158)(74 159)(75 160)(76 151)(77 152)(78 153)(79 154)(80 155)
(1 116 6 111)(2 117 7 112)(3 118 8 113)(4 119 9 114)(5 120 10 115)(11 106 16 101)(12 107 17 102)(13 108 18 103)(14 109 19 104)(15 110 20 105)(21 91 26 96)(22 92 27 97)(23 93 28 98)(24 94 29 99)(25 95 30 100)(31 81 36 86)(32 82 37 87)(33 83 38 88)(34 84 39 89)(35 85 40 90)(41 151 46 156)(42 152 47 157)(43 153 48 158)(44 154 49 159)(45 155 50 160)(51 141 56 146)(52 142 57 147)(53 143 58 148)(54 144 59 149)(55 145 60 150)(61 136 66 131)(62 137 67 132)(63 138 68 133)(64 139 69 134)(65 140 70 135)(71 126 76 121)(72 127 77 122)(73 128 78 123)(74 129 79 124)(75 130 80 125)
(1 51 11 41)(2 52 12 42)(3 53 13 43)(4 54 14 44)(5 55 15 45)(6 56 16 46)(7 57 17 47)(8 58 18 48)(9 59 19 49)(10 60 20 50)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)(81 131 91 121)(82 132 92 122)(83 133 93 123)(84 134 94 124)(85 135 95 125)(86 136 96 126)(87 137 97 127)(88 138 98 128)(89 139 99 129)(90 140 100 130)(101 151 111 141)(102 152 112 142)(103 153 113 143)(104 154 114 144)(105 155 115 145)(106 156 116 146)(107 157 117 147)(108 158 118 148)(109 159 119 149)(110 160 120 150)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 5)(2 4)(6 10)(7 9)(11 15)(12 14)(16 20)(17 19)(21 35)(22 34)(23 33)(24 32)(25 31)(26 40)(27 39)(28 38)(29 37)(30 36)(41 50)(42 49)(43 48)(44 47)(45 46)(51 60)(52 59)(53 58)(54 57)(55 56)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)(81 85)(82 84)(86 90)(87 89)(91 95)(92 94)(96 100)(97 99)(101 115)(102 114)(103 113)(104 112)(105 111)(106 120)(107 119)(108 118)(109 117)(110 116)(121 130)(122 129)(123 128)(124 127)(125 126)(131 140)(132 139)(133 138)(134 137)(135 136)(141 160)(142 159)(143 158)(144 157)(145 156)(146 155)(147 154)(148 153)(149 152)(150 151)

G:=sub<Sym(160)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,96)(12,97)(13,98)(14,99)(15,100)(16,91)(17,92)(18,93)(19,94)(20,95)(21,106)(22,107)(23,108)(24,109)(25,110)(26,101)(27,102)(28,103)(29,104)(30,105)(31,116)(32,117)(33,118)(34,119)(35,120)(36,111)(37,112)(38,113)(39,114)(40,115)(41,126)(42,127)(43,128)(44,129)(45,130)(46,121)(47,122)(48,123)(49,124)(50,125)(51,136)(52,137)(53,138)(54,139)(55,140)(56,131)(57,132)(58,133)(59,134)(60,135)(61,146)(62,147)(63,148)(64,149)(65,150)(66,141)(67,142)(68,143)(69,144)(70,145)(71,156)(72,157)(73,158)(74,159)(75,160)(76,151)(77,152)(78,153)(79,154)(80,155), (1,116,6,111)(2,117,7,112)(3,118,8,113)(4,119,9,114)(5,120,10,115)(11,106,16,101)(12,107,17,102)(13,108,18,103)(14,109,19,104)(15,110,20,105)(21,91,26,96)(22,92,27,97)(23,93,28,98)(24,94,29,99)(25,95,30,100)(31,81,36,86)(32,82,37,87)(33,83,38,88)(34,84,39,89)(35,85,40,90)(41,151,46,156)(42,152,47,157)(43,153,48,158)(44,154,49,159)(45,155,50,160)(51,141,56,146)(52,142,57,147)(53,143,58,148)(54,144,59,149)(55,145,60,150)(61,136,66,131)(62,137,67,132)(63,138,68,133)(64,139,69,134)(65,140,70,135)(71,126,76,121)(72,127,77,122)(73,128,78,123)(74,129,79,124)(75,130,80,125), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,5)(2,4)(6,10)(7,9)(11,15)(12,14)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,40)(27,39)(28,38)(29,37)(30,36)(41,50)(42,49)(43,48)(44,47)(45,46)(51,60)(52,59)(53,58)(54,57)(55,56)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,85)(82,84)(86,90)(87,89)(91,95)(92,94)(96,100)(97,99)(101,115)(102,114)(103,113)(104,112)(105,111)(106,120)(107,119)(108,118)(109,117)(110,116)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,160)(142,159)(143,158)(144,157)(145,156)(146,155)(147,154)(148,153)(149,152)(150,151)>;

G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,96)(12,97)(13,98)(14,99)(15,100)(16,91)(17,92)(18,93)(19,94)(20,95)(21,106)(22,107)(23,108)(24,109)(25,110)(26,101)(27,102)(28,103)(29,104)(30,105)(31,116)(32,117)(33,118)(34,119)(35,120)(36,111)(37,112)(38,113)(39,114)(40,115)(41,126)(42,127)(43,128)(44,129)(45,130)(46,121)(47,122)(48,123)(49,124)(50,125)(51,136)(52,137)(53,138)(54,139)(55,140)(56,131)(57,132)(58,133)(59,134)(60,135)(61,146)(62,147)(63,148)(64,149)(65,150)(66,141)(67,142)(68,143)(69,144)(70,145)(71,156)(72,157)(73,158)(74,159)(75,160)(76,151)(77,152)(78,153)(79,154)(80,155), (1,116,6,111)(2,117,7,112)(3,118,8,113)(4,119,9,114)(5,120,10,115)(11,106,16,101)(12,107,17,102)(13,108,18,103)(14,109,19,104)(15,110,20,105)(21,91,26,96)(22,92,27,97)(23,93,28,98)(24,94,29,99)(25,95,30,100)(31,81,36,86)(32,82,37,87)(33,83,38,88)(34,84,39,89)(35,85,40,90)(41,151,46,156)(42,152,47,157)(43,153,48,158)(44,154,49,159)(45,155,50,160)(51,141,56,146)(52,142,57,147)(53,143,58,148)(54,144,59,149)(55,145,60,150)(61,136,66,131)(62,137,67,132)(63,138,68,133)(64,139,69,134)(65,140,70,135)(71,126,76,121)(72,127,77,122)(73,128,78,123)(74,129,79,124)(75,130,80,125), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,5)(2,4)(6,10)(7,9)(11,15)(12,14)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,40)(27,39)(28,38)(29,37)(30,36)(41,50)(42,49)(43,48)(44,47)(45,46)(51,60)(52,59)(53,58)(54,57)(55,56)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,85)(82,84)(86,90)(87,89)(91,95)(92,94)(96,100)(97,99)(101,115)(102,114)(103,113)(104,112)(105,111)(106,120)(107,119)(108,118)(109,117)(110,116)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,160)(142,159)(143,158)(144,157)(145,156)(146,155)(147,154)(148,153)(149,152)(150,151) );

G=PermutationGroup([[(1,86),(2,87),(3,88),(4,89),(5,90),(6,81),(7,82),(8,83),(9,84),(10,85),(11,96),(12,97),(13,98),(14,99),(15,100),(16,91),(17,92),(18,93),(19,94),(20,95),(21,106),(22,107),(23,108),(24,109),(25,110),(26,101),(27,102),(28,103),(29,104),(30,105),(31,116),(32,117),(33,118),(34,119),(35,120),(36,111),(37,112),(38,113),(39,114),(40,115),(41,126),(42,127),(43,128),(44,129),(45,130),(46,121),(47,122),(48,123),(49,124),(50,125),(51,136),(52,137),(53,138),(54,139),(55,140),(56,131),(57,132),(58,133),(59,134),(60,135),(61,146),(62,147),(63,148),(64,149),(65,150),(66,141),(67,142),(68,143),(69,144),(70,145),(71,156),(72,157),(73,158),(74,159),(75,160),(76,151),(77,152),(78,153),(79,154),(80,155)], [(1,116,6,111),(2,117,7,112),(3,118,8,113),(4,119,9,114),(5,120,10,115),(11,106,16,101),(12,107,17,102),(13,108,18,103),(14,109,19,104),(15,110,20,105),(21,91,26,96),(22,92,27,97),(23,93,28,98),(24,94,29,99),(25,95,30,100),(31,81,36,86),(32,82,37,87),(33,83,38,88),(34,84,39,89),(35,85,40,90),(41,151,46,156),(42,152,47,157),(43,153,48,158),(44,154,49,159),(45,155,50,160),(51,141,56,146),(52,142,57,147),(53,143,58,148),(54,144,59,149),(55,145,60,150),(61,136,66,131),(62,137,67,132),(63,138,68,133),(64,139,69,134),(65,140,70,135),(71,126,76,121),(72,127,77,122),(73,128,78,123),(74,129,79,124),(75,130,80,125)], [(1,51,11,41),(2,52,12,42),(3,53,13,43),(4,54,14,44),(5,55,15,45),(6,56,16,46),(7,57,17,47),(8,58,18,48),(9,59,19,49),(10,60,20,50),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70),(81,131,91,121),(82,132,92,122),(83,133,93,123),(84,134,94,124),(85,135,95,125),(86,136,96,126),(87,137,97,127),(88,138,98,128),(89,139,99,129),(90,140,100,130),(101,151,111,141),(102,152,112,142),(103,153,113,143),(104,154,114,144),(105,155,115,145),(106,156,116,146),(107,157,117,147),(108,158,118,148),(109,159,119,149),(110,160,120,150)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,5),(2,4),(6,10),(7,9),(11,15),(12,14),(16,20),(17,19),(21,35),(22,34),(23,33),(24,32),(25,31),(26,40),(27,39),(28,38),(29,37),(30,36),(41,50),(42,49),(43,48),(44,47),(45,46),(51,60),(52,59),(53,58),(54,57),(55,56),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71),(81,85),(82,84),(86,90),(87,89),(91,95),(92,94),(96,100),(97,99),(101,115),(102,114),(103,113),(104,112),(105,111),(106,120),(107,119),(108,118),(109,117),(110,116),(121,130),(122,129),(123,128),(124,127),(125,126),(131,140),(132,139),(133,138),(134,137),(135,136),(141,160),(142,159),(143,158),(144,157),(145,156),(146,155),(147,154),(148,153),(149,152),(150,151)]])

68 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E4F4G4H4I···4P4Q4R5A5B10A···10N20A···20X
order12···222444444444···4445510···1020···20
size11···120202222444410···102020222···24···4

68 irreducible representations

dim11111112222244
type++++++++++-+
imageC1C2C2C2C2C2C2D5C4○D4D10D10C4○D20D42D5Q82D5
kernelC2×C4⋊C4⋊D5C4⋊C4⋊D5C2×C4×Dic5C2×C10.D4C2×C4⋊Dic5C2×D10⋊C4C10×C4⋊C4C2×C4⋊C4C2×C10C4⋊C4C22×C4C22C22C22
# reps1811131212861644

Matrix representation of C2×C4⋊C4⋊D5 in GL6(𝔽41)

100000
010000
0040000
0004000
0000400
0000040
,
110000
0400000
001000
000100
0000040
000010
,
3200000
0320000
001000
000100
0000032
0000320
,
100000
010000
00344000
001000
000010
000001
,
100000
39400000
00344000
007700
000010
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,1,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,0,32,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,39,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,40,7,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

C2×C4⋊C4⋊D5 in GAP, Magma, Sage, TeX

C_2\times C_4\rtimes C_4\rtimes D_5
% in TeX

G:=Group("C2xC4:C4:D5");
// GroupNames label

G:=SmallGroup(320,1184);
// by ID

G=gap.SmallGroup(320,1184);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,100,675,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,e*b*e=b*c^2,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽