Copied to
clipboard

G = (C2×C4).21D20order 320 = 26·5

14th non-split extension by C2×C4 of D20 acting via D20/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C4).21D20, (C2×C20).32D4, C2.9(C4⋊D20), (C22×D5).16D4, C22.83(C2×D20), (C22×C4).19D10, C22.158(D4×D5), C10.36(C4⋊D4), C10.3(C4.4D4), C2.8(C4.D20), C2.C4213D5, C51(C23.11D4), (C23×D5).6C22, C10.10C426C2, C22.91(C4○D20), (C22×C20).18C22, C23.362(C22×D5), C10.22(C422C2), C22.89(D42D5), (C22×C10).299C23, C22.46(Q82D5), C2.8(C22.D20), C2.10(D10.12D4), C10.11(C22.D4), (C22×Dic5).21C22, (C2×C4⋊Dic5)⋊3C2, (C2×C10).97(C2×D4), C2.10(C4⋊C4⋊D5), (C2×D10⋊C4).9C2, (C2×C10).185(C4○D4), (C5×C2.C42)⋊11C2, SmallGroup(320,301)

Series: Derived Chief Lower central Upper central

C1C22×C10 — (C2×C4).21D20
C1C5C10C2×C10C22×C10C23×D5C2×D10⋊C4 — (C2×C4).21D20
C5C22×C10 — (C2×C4).21D20
C1C23C2.C42

Generators and relations for (C2×C4).21D20
 G = < a,b,c,d | a2=b4=c20=1, d2=ab2, cbc-1=ab=ba, ac=ca, ad=da, dbd-1=b-1, dcd-1=ab2c-1 >

Subgroups: 742 in 170 conjugacy classes, 57 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2.C42, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C23.11D4, C4⋊Dic5, D10⋊C4, C22×Dic5, C22×Dic5, C22×C20, C22×C20, C23×D5, C10.10C42, C5×C2.C42, C2×C4⋊Dic5, C2×D10⋊C4, C2×D10⋊C4, (C2×C4).21D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C22.D4, C4.4D4, C422C2, D20, C22×D5, C23.11D4, C2×D20, C4○D20, D4×D5, D42D5, Q82D5, C4.D20, D10.12D4, C22.D20, C4⋊D20, C4⋊C4⋊D5, (C2×C4).21D20

Smallest permutation representation of (C2×C4).21D20
On 160 points
Generators in S160
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 73)(8 74)(9 75)(10 76)(11 77)(12 78)(13 79)(14 80)(15 61)(16 62)(17 63)(18 64)(19 65)(20 66)(21 52)(22 53)(23 54)(24 55)(25 56)(26 57)(27 58)(28 59)(29 60)(30 41)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)(37 48)(38 49)(39 50)(40 51)(81 150)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)(91 160)(92 141)(93 142)(94 143)(95 144)(96 145)(97 146)(98 147)(99 148)(100 149)(101 139)(102 140)(103 121)(104 122)(105 123)(106 124)(107 125)(108 126)(109 127)(110 128)(111 129)(112 130)(113 131)(114 132)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)
(1 125 38 88)(2 108 39 158)(3 127 40 90)(4 110 21 160)(5 129 22 92)(6 112 23 142)(7 131 24 94)(8 114 25 144)(9 133 26 96)(10 116 27 146)(11 135 28 98)(12 118 29 148)(13 137 30 100)(14 120 31 150)(15 139 32 82)(16 102 33 152)(17 121 34 84)(18 104 35 154)(19 123 36 86)(20 106 37 156)(41 149 79 119)(42 81 80 138)(43 151 61 101)(44 83 62 140)(45 153 63 103)(46 85 64 122)(47 155 65 105)(48 87 66 124)(49 157 67 107)(50 89 68 126)(51 159 69 109)(52 91 70 128)(53 141 71 111)(54 93 72 130)(55 143 73 113)(56 95 74 132)(57 145 75 115)(58 97 76 134)(59 147 77 117)(60 99 78 136)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 48 49 20)(2 19 50 47)(3 46 51 18)(4 17 52 45)(5 44 53 16)(6 15 54 43)(7 42 55 14)(8 13 56 41)(9 60 57 12)(10 11 58 59)(21 34 70 63)(22 62 71 33)(23 32 72 61)(24 80 73 31)(25 30 74 79)(26 78 75 29)(27 28 76 77)(35 40 64 69)(36 68 65 39)(37 38 66 67)(81 113 120 94)(82 93 101 112)(83 111 102 92)(84 91 103 110)(85 109 104 90)(86 89 105 108)(87 107 106 88)(95 119 114 100)(96 99 115 118)(97 117 116 98)(121 128 153 160)(122 159 154 127)(123 126 155 158)(124 157 156 125)(129 140 141 152)(130 151 142 139)(131 138 143 150)(132 149 144 137)(133 136 145 148)(134 147 146 135)

G:=sub<Sym(160)| (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(40,51)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,141)(93,142)(94,143)(95,144)(96,145)(97,146)(98,147)(99,148)(100,149)(101,139)(102,140)(103,121)(104,122)(105,123)(106,124)(107,125)(108,126)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138), (1,125,38,88)(2,108,39,158)(3,127,40,90)(4,110,21,160)(5,129,22,92)(6,112,23,142)(7,131,24,94)(8,114,25,144)(9,133,26,96)(10,116,27,146)(11,135,28,98)(12,118,29,148)(13,137,30,100)(14,120,31,150)(15,139,32,82)(16,102,33,152)(17,121,34,84)(18,104,35,154)(19,123,36,86)(20,106,37,156)(41,149,79,119)(42,81,80,138)(43,151,61,101)(44,83,62,140)(45,153,63,103)(46,85,64,122)(47,155,65,105)(48,87,66,124)(49,157,67,107)(50,89,68,126)(51,159,69,109)(52,91,70,128)(53,141,71,111)(54,93,72,130)(55,143,73,113)(56,95,74,132)(57,145,75,115)(58,97,76,134)(59,147,77,117)(60,99,78,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,48,49,20)(2,19,50,47)(3,46,51,18)(4,17,52,45)(5,44,53,16)(6,15,54,43)(7,42,55,14)(8,13,56,41)(9,60,57,12)(10,11,58,59)(21,34,70,63)(22,62,71,33)(23,32,72,61)(24,80,73,31)(25,30,74,79)(26,78,75,29)(27,28,76,77)(35,40,64,69)(36,68,65,39)(37,38,66,67)(81,113,120,94)(82,93,101,112)(83,111,102,92)(84,91,103,110)(85,109,104,90)(86,89,105,108)(87,107,106,88)(95,119,114,100)(96,99,115,118)(97,117,116,98)(121,128,153,160)(122,159,154,127)(123,126,155,158)(124,157,156,125)(129,140,141,152)(130,151,142,139)(131,138,143,150)(132,149,144,137)(133,136,145,148)(134,147,146,135)>;

G:=Group( (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(40,51)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,141)(93,142)(94,143)(95,144)(96,145)(97,146)(98,147)(99,148)(100,149)(101,139)(102,140)(103,121)(104,122)(105,123)(106,124)(107,125)(108,126)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138), (1,125,38,88)(2,108,39,158)(3,127,40,90)(4,110,21,160)(5,129,22,92)(6,112,23,142)(7,131,24,94)(8,114,25,144)(9,133,26,96)(10,116,27,146)(11,135,28,98)(12,118,29,148)(13,137,30,100)(14,120,31,150)(15,139,32,82)(16,102,33,152)(17,121,34,84)(18,104,35,154)(19,123,36,86)(20,106,37,156)(41,149,79,119)(42,81,80,138)(43,151,61,101)(44,83,62,140)(45,153,63,103)(46,85,64,122)(47,155,65,105)(48,87,66,124)(49,157,67,107)(50,89,68,126)(51,159,69,109)(52,91,70,128)(53,141,71,111)(54,93,72,130)(55,143,73,113)(56,95,74,132)(57,145,75,115)(58,97,76,134)(59,147,77,117)(60,99,78,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,48,49,20)(2,19,50,47)(3,46,51,18)(4,17,52,45)(5,44,53,16)(6,15,54,43)(7,42,55,14)(8,13,56,41)(9,60,57,12)(10,11,58,59)(21,34,70,63)(22,62,71,33)(23,32,72,61)(24,80,73,31)(25,30,74,79)(26,78,75,29)(27,28,76,77)(35,40,64,69)(36,68,65,39)(37,38,66,67)(81,113,120,94)(82,93,101,112)(83,111,102,92)(84,91,103,110)(85,109,104,90)(86,89,105,108)(87,107,106,88)(95,119,114,100)(96,99,115,118)(97,117,116,98)(121,128,153,160)(122,159,154,127)(123,126,155,158)(124,157,156,125)(129,140,141,152)(130,151,142,139)(131,138,143,150)(132,149,144,137)(133,136,145,148)(134,147,146,135) );

G=PermutationGroup([[(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,73),(8,74),(9,75),(10,76),(11,77),(12,78),(13,79),(14,80),(15,61),(16,62),(17,63),(18,64),(19,65),(20,66),(21,52),(22,53),(23,54),(24,55),(25,56),(26,57),(27,58),(28,59),(29,60),(30,41),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47),(37,48),(38,49),(39,50),(40,51),(81,150),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159),(91,160),(92,141),(93,142),(94,143),(95,144),(96,145),(97,146),(98,147),(99,148),(100,149),(101,139),(102,140),(103,121),(104,122),(105,123),(106,124),(107,125),(108,126),(109,127),(110,128),(111,129),(112,130),(113,131),(114,132),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138)], [(1,125,38,88),(2,108,39,158),(3,127,40,90),(4,110,21,160),(5,129,22,92),(6,112,23,142),(7,131,24,94),(8,114,25,144),(9,133,26,96),(10,116,27,146),(11,135,28,98),(12,118,29,148),(13,137,30,100),(14,120,31,150),(15,139,32,82),(16,102,33,152),(17,121,34,84),(18,104,35,154),(19,123,36,86),(20,106,37,156),(41,149,79,119),(42,81,80,138),(43,151,61,101),(44,83,62,140),(45,153,63,103),(46,85,64,122),(47,155,65,105),(48,87,66,124),(49,157,67,107),(50,89,68,126),(51,159,69,109),(52,91,70,128),(53,141,71,111),(54,93,72,130),(55,143,73,113),(56,95,74,132),(57,145,75,115),(58,97,76,134),(59,147,77,117),(60,99,78,136)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,48,49,20),(2,19,50,47),(3,46,51,18),(4,17,52,45),(5,44,53,16),(6,15,54,43),(7,42,55,14),(8,13,56,41),(9,60,57,12),(10,11,58,59),(21,34,70,63),(22,62,71,33),(23,32,72,61),(24,80,73,31),(25,30,74,79),(26,78,75,29),(27,28,76,77),(35,40,64,69),(36,68,65,39),(37,38,66,67),(81,113,120,94),(82,93,101,112),(83,111,102,92),(84,91,103,110),(85,109,104,90),(86,89,105,108),(87,107,106,88),(95,119,114,100),(96,99,115,118),(97,117,116,98),(121,128,153,160),(122,159,154,127),(123,126,155,158),(124,157,156,125),(129,140,141,152),(130,151,142,139),(131,138,143,150),(132,149,144,137),(133,136,145,148),(134,147,146,135)]])

62 conjugacy classes

class 1 2A···2G2H2I4A···4F4G···4L5A5B10A···10N20A···20X
order12···2224···44···45510···1020···20
size11···120204···420···20222···24···4

62 irreducible representations

dim111112222222444
type+++++++++++-+
imageC1C2C2C2C2D4D4D5C4○D4D10D20C4○D20D4×D5D42D5Q82D5
kernel(C2×C4).21D20C10.10C42C5×C2.C42C2×C4⋊Dic5C2×D10⋊C4C2×C20C22×D5C2.C42C2×C10C22×C4C2×C4C22C22C22C22
# reps12113222106816242

Matrix representation of (C2×C4).21D20 in GL6(𝔽41)

100000
010000
001000
000100
0000400
0000040
,
100000
010000
00303200
0091100
000090
0000032
,
32300000
11270000
0003200
0092200
0000032
0000320
,
9110000
30320000
0003200
0032000
0000032
000090

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,9,0,0,0,0,32,11,0,0,0,0,0,0,9,0,0,0,0,0,0,32],[32,11,0,0,0,0,30,27,0,0,0,0,0,0,0,9,0,0,0,0,32,22,0,0,0,0,0,0,0,32,0,0,0,0,32,0],[9,30,0,0,0,0,11,32,0,0,0,0,0,0,0,32,0,0,0,0,32,0,0,0,0,0,0,0,0,9,0,0,0,0,32,0] >;

(C2×C4).21D20 in GAP, Magma, Sage, TeX

(C_2\times C_4)._{21}D_{20}
% in TeX

G:=Group("(C2xC4).21D20");
// GroupNames label

G:=SmallGroup(320,301);
// by ID

G=gap.SmallGroup(320,301);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,64,254,387,100,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^20=1,d^2=a*b^2,c*b*c^-1=a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b^-1,d*c*d^-1=a*b^2*c^-1>;
// generators/relations

׿
×
𝔽