Extensions 1→N→G→Q→1 with N=C4 and Q=C4×C20

Direct product G=N×Q with N=C4 and Q=C4×C20
dρLabelID
C42×C20320C4^2xC20320,875

Semidirect products G=N:Q with N=C4 and Q=C4×C20
extensionφ:Q→Aut NdρLabelID
C4⋊(C4×C20) = C4⋊C4×C20φ: C4×C20/C2×C20C2 ⊆ Aut C4320C4:(C4xC20)320,879

Non-split extensions G=N.Q with N=C4 and Q=C4×C20
extensionφ:Q→Aut NdρLabelID
C4.1(C4×C20) = C5×C426C4φ: C4×C20/C2×C20C2 ⊆ Aut C480C4.1(C4xC20)320,144
C4.2(C4×C20) = C5×C22.4Q16φ: C4×C20/C2×C20C2 ⊆ Aut C4320C4.2(C4xC20)320,145
C4.3(C4×C20) = C5×C4.C42φ: C4×C20/C2×C20C2 ⊆ Aut C4160C4.3(C4xC20)320,146
C4.4(C4×C20) = M4(2)×C20φ: C4×C20/C2×C20C2 ⊆ Aut C4160C4.4(C4xC20)320,905
C4.5(C4×C20) = C5×C82M4(2)φ: C4×C20/C2×C20C2 ⊆ Aut C4160C4.5(C4xC20)320,906
C4.6(C4×C20) = C5×C165C4central extension (φ=1)320C4.6(C4xC20)320,151
C4.7(C4×C20) = C5×C424C4central extension (φ=1)320C4.7(C4xC20)320,877
C4.8(C4×C20) = C10×C8⋊C4central extension (φ=1)320C4.8(C4xC20)320,904
C4.9(C4×C20) = C5×C4.9C42central stem extension (φ=1)804C4.9(C4xC20)320,142
C4.10(C4×C20) = C5×C4.10C42central stem extension (φ=1)804C4.10(C4xC20)320,143
C4.11(C4×C20) = C5×C16⋊C4central stem extension (φ=1)804C4.11(C4xC20)320,152

׿
×
𝔽