Copied to
clipboard

G = C5×C16⋊C4order 320 = 26·5

Direct product of C5 and C16⋊C4

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C16⋊C4, C162C20, C8012C4, C42.1C20, C20.65C42, M5(2).2C10, C20.56M4(2), (C2×C8).2C20, (C4×C20).21C4, (C2×C40).29C4, C4.11(C4×C20), C8.19(C2×C20), C8⋊C4.4C10, C40.128(C2×C4), C4.6(C5×M4(2)), C10.17(C8⋊C4), (C5×M5(2)).6C2, (C2×C40).308C22, (C2×C10).34M4(2), C22.4(C5×M4(2)), C2.3(C5×C8⋊C4), (C5×C8⋊C4).9C2, (C2×C8).45(C2×C10), (C2×C4).66(C2×C20), (C2×C20).500(C2×C4), SmallGroup(320,152)

Series: Derived Chief Lower central Upper central

C1C4 — C5×C16⋊C4
C1C2C4C2×C4C2×C8C2×C40C5×M5(2) — C5×C16⋊C4
C1C4 — C5×C16⋊C4
C1C20 — C5×C16⋊C4

Generators and relations for C5×C16⋊C4
 G = < a,b,c | a5=b16=c4=1, ab=ba, ac=ca, cbc-1=b13 >

2C2
4C4
2C10
2C8
2C2×C4
4C20
2C2×C20
2C40

Smallest permutation representation of C5×C16⋊C4
On 80 points
Generators in S80
(1 64 18 45 77)(2 49 19 46 78)(3 50 20 47 79)(4 51 21 48 80)(5 52 22 33 65)(6 53 23 34 66)(7 54 24 35 67)(8 55 25 36 68)(9 56 26 37 69)(10 57 27 38 70)(11 58 28 39 71)(12 59 29 40 72)(13 60 30 41 73)(14 61 31 42 74)(15 62 32 43 75)(16 63 17 44 76)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 6 10 14)(3 11)(4 16 12 8)(7 15)(17 29 25 21)(19 23 27 31)(20 28)(24 32)(34 38 42 46)(35 43)(36 48 44 40)(39 47)(49 53 57 61)(50 58)(51 63 59 55)(54 62)(66 70 74 78)(67 75)(68 80 76 72)(71 79)

G:=sub<Sym(80)| (1,64,18,45,77)(2,49,19,46,78)(3,50,20,47,79)(4,51,21,48,80)(5,52,22,33,65)(6,53,23,34,66)(7,54,24,35,67)(8,55,25,36,68)(9,56,26,37,69)(10,57,27,38,70)(11,58,28,39,71)(12,59,29,40,72)(13,60,30,41,73)(14,61,31,42,74)(15,62,32,43,75)(16,63,17,44,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,6,10,14)(3,11)(4,16,12,8)(7,15)(17,29,25,21)(19,23,27,31)(20,28)(24,32)(34,38,42,46)(35,43)(36,48,44,40)(39,47)(49,53,57,61)(50,58)(51,63,59,55)(54,62)(66,70,74,78)(67,75)(68,80,76,72)(71,79)>;

G:=Group( (1,64,18,45,77)(2,49,19,46,78)(3,50,20,47,79)(4,51,21,48,80)(5,52,22,33,65)(6,53,23,34,66)(7,54,24,35,67)(8,55,25,36,68)(9,56,26,37,69)(10,57,27,38,70)(11,58,28,39,71)(12,59,29,40,72)(13,60,30,41,73)(14,61,31,42,74)(15,62,32,43,75)(16,63,17,44,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,6,10,14)(3,11)(4,16,12,8)(7,15)(17,29,25,21)(19,23,27,31)(20,28)(24,32)(34,38,42,46)(35,43)(36,48,44,40)(39,47)(49,53,57,61)(50,58)(51,63,59,55)(54,62)(66,70,74,78)(67,75)(68,80,76,72)(71,79) );

G=PermutationGroup([[(1,64,18,45,77),(2,49,19,46,78),(3,50,20,47,79),(4,51,21,48,80),(5,52,22,33,65),(6,53,23,34,66),(7,54,24,35,67),(8,55,25,36,68),(9,56,26,37,69),(10,57,27,38,70),(11,58,28,39,71),(12,59,29,40,72),(13,60,30,41,73),(14,61,31,42,74),(15,62,32,43,75),(16,63,17,44,76)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,6,10,14),(3,11),(4,16,12,8),(7,15),(17,29,25,21),(19,23,27,31),(20,28),(24,32),(34,38,42,46),(35,43),(36,48,44,40),(39,47),(49,53,57,61),(50,58),(51,63,59,55),(54,62),(66,70,74,78),(67,75),(68,80,76,72),(71,79)]])

110 conjugacy classes

class 1 2A2B4A4B4C4D4E5A5B5C5D8A8B8C8D8E8F10A10B10C10D10E10F10G10H16A···16H20A···20H20I20J20K20L20M···20T40A···40P40Q···40X80A···80AF
order122444445555888888101010101010101016···1620···202020202020···2040···4040···4080···80
size112112441111222244111122224···41···122224···42···24···44···4

110 irreducible representations

dim111111111111222244
type+++
imageC1C2C2C4C4C4C5C10C10C20C20C20M4(2)M4(2)C5×M4(2)C5×M4(2)C16⋊C4C5×C16⋊C4
kernelC5×C16⋊C4C5×C8⋊C4C5×M5(2)C80C4×C20C2×C40C16⋊C4C8⋊C4M5(2)C16C42C2×C8C20C2×C10C4C22C5C1
# reps1128224483288228828

Matrix representation of C5×C16⋊C4 in GL4(𝔽241) generated by

98000
09800
00980
00098
,
115239105135
000240
06400
2240115126
,
12402128
024000
001770
00064
G:=sub<GL(4,GF(241))| [98,0,0,0,0,98,0,0,0,0,98,0,0,0,0,98],[115,0,0,2,239,0,64,240,105,0,0,115,135,240,0,126],[1,0,0,0,240,240,0,0,2,0,177,0,128,0,0,64] >;

C5×C16⋊C4 in GAP, Magma, Sage, TeX

C_5\times C_{16}\rtimes C_4
% in TeX

G:=Group("C5xC16:C4");
// GroupNames label

G:=SmallGroup(320,152);
// by ID

G=gap.SmallGroup(320,152);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,140,1149,288,2530,136,7004,124]);
// Polycyclic

G:=Group<a,b,c|a^5=b^16=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^13>;
// generators/relations

Export

Subgroup lattice of C5×C16⋊C4 in TeX

׿
×
𝔽