Extensions 1→N→G→Q→1 with N=C22 and Q=C4.F5

Direct product G=N×Q with N=C22 and Q=C4.F5

Semidirect products G=N:Q with N=C22 and Q=C4.F5
extensionφ:Q→Aut NdρLabelID
C221(C4.F5) = C5⋊C8⋊D4φ: C4.F5/C5⋊C8C2 ⊆ Aut C22160C2^2:1(C4.F5)320,1031
C222(C4.F5) = D1010M4(2)φ: C4.F5/C4×D5C2 ⊆ Aut C2280C2^2:2(C4.F5)320,1094

Non-split extensions G=N.Q with N=C22 and Q=C4.F5
extensionφ:Q→Aut NdρLabelID
C22.1(C4.F5) = D20.C8φ: C4.F5/C5⋊C8C2 ⊆ Aut C221608C2^2.1(C4.F5)320,236
C22.2(C4.F5) = C40.1C8φ: C4.F5/C4×D5C2 ⊆ Aut C22804C2^2.2(C4.F5)320,227
C22.3(C4.F5) = C20.23C42φ: C4.F5/C4×D5C2 ⊆ Aut C22804C2^2.3(C4.F5)320,228
C22.4(C4.F5) = (C22×C4).F5φ: C4.F5/C4×D5C2 ⊆ Aut C22160C2^2.4(C4.F5)320,252
C22.5(C4.F5) = C5⋊(C23⋊C8)φ: C4.F5/C4×D5C2 ⊆ Aut C2280C2^2.5(C4.F5)320,253
C22.6(C4.F5) = C20.30M4(2)φ: C4.F5/C4×D5C2 ⊆ Aut C22160C2^2.6(C4.F5)320,1097
C22.7(C4.F5) = C10.(C4⋊C8)central extension (φ=1)320C2^2.7(C4.F5)320,256
C22.8(C4.F5) = C2×C20⋊C8central extension (φ=1)320C2^2.8(C4.F5)320,1085
C22.9(C4.F5) = C2×C10.C42central extension (φ=1)320C2^2.9(C4.F5)320,1087
C22.10(C4.F5) = C2×D10⋊C8central extension (φ=1)160C2^2.10(C4.F5)320,1089