# Extensions 1→N→G→Q→1 with N=C4×D5 and Q=C8

Direct product G=N×Q with N=C4×D5 and Q=C8
dρLabelID
D5×C4×C8160D5xC4xC8320,311

Semidirect products G=N:Q with N=C4×D5 and Q=C8
extensionφ:Q→Out NdρLabelID
(C4×D5)⋊1C8 = D5×C4⋊C8φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5):1C8320,459
(C4×D5)⋊2C8 = C42.200D10φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5):2C8320,460
(C4×D5)⋊3C8 = C42.282D10φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5):3C8320,312
(C4×D5)⋊4C8 = C42.11F5φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5):4C8320,1017
(C4×D5)⋊5C8 = C42.12F5φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5):5C8320,1018
(C4×D5)⋊6C8 = C4×D5⋊C8φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5):6C8320,1013
(C4×D5)⋊7C8 = C42.6F5φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5):7C8320,1016

Non-split extensions G=N.Q with N=C4×D5 and Q=C8
extensionφ:Q→Out NdρLabelID
(C4×D5).1C8 = D5×M5(2)φ: C8/C4C2 ⊆ Out C4×D5804(C4xD5).1C8320,533
(C4×D5).2C8 = C32⋊D5φ: C8/C4C2 ⊆ Out C4×D51602(C4xD5).2C8320,5
(C4×D5).3C8 = C2×C80⋊C2φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5).3C8320,527
(C4×D5).4C8 = D5⋊M5(2)φ: C8/C4C2 ⊆ Out C4×D5804(C4xD5).4C8320,1053
(C4×D5).5C8 = D5⋊C32φ: C8/C4C2 ⊆ Out C4×D51604(C4xD5).5C8320,179
(C4×D5).6C8 = C80.C4φ: C8/C4C2 ⊆ Out C4×D51604(C4xD5).6C8320,180
(C4×D5).7C8 = C2×D5⋊C16φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5).7C8320,1051
(C4×D5).8C8 = C2×C8.F5φ: C8/C4C2 ⊆ Out C4×D5160(C4xD5).8C8320,1052
(C4×D5).9C8 = D5×C32φ: trivial image1602(C4xD5).9C8320,4
(C4×D5).10C8 = D5×C2×C16φ: trivial image160(C4xD5).10C8320,526

׿
×
𝔽