Copied to
clipboard

G = C2×C8.F5order 320 = 26·5

Direct product of C2 and C8.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C8.F5, C101M5(2), C5⋊C161C22, (C4×D5).8C8, C51(C2×M5(2)), C8.32(C2×F5), (C2×C8).19F5, C20.24(C2×C8), C40.39(C2×C4), (C2×C40).23C4, (C8×D5).11C4, C4.19(D5⋊C8), D10.17(C2×C8), C10.9(C22×C8), (C22×D5).8C8, C4.46(C22×F5), C20.86(C22×C4), C52C8.36C23, Dic5.17(C2×C8), (C2×Dic5).13C8, (C8×D5).62C22, C22.13(D5⋊C8), (C2×C5⋊C16)⋊7C2, (C2×C4×D5).46C4, (D5×C2×C8).30C2, C2.10(C2×D5⋊C8), (C2×C10).11(C2×C8), C52C8.52(C2×C4), (C4×D5).92(C2×C4), (C2×C4).164(C2×F5), (C2×C20).173(C2×C4), (C2×C52C8).349C22, SmallGroup(320,1052)

Series: Derived Chief Lower central Upper central

C1C10 — C2×C8.F5
C1C5C10C20C52C8C5⋊C16C2×C5⋊C16 — C2×C8.F5
C5C10 — C2×C8.F5
C1C2×C4C2×C8

Generators and relations for C2×C8.F5
 G = < a,b,c,d | a2=b8=c5=1, d4=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=c3 >

Subgroups: 250 in 90 conjugacy classes, 52 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, C10, C10, C16, C2×C8, C2×C8, C22×C4, Dic5, C20, D10, D10, C2×C10, C2×C16, M5(2), C22×C8, C52C8, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, C2×M5(2), C5⋊C16, C8×D5, C2×C52C8, C2×C40, C2×C4×D5, C8.F5, C2×C5⋊C16, D5×C2×C8, C2×C8.F5
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C2×C8, C22×C4, F5, M5(2), C22×C8, C2×F5, C2×M5(2), D5⋊C8, C22×F5, C8.F5, C2×D5⋊C8, C2×C8.F5

Smallest permutation representation of C2×C8.F5
On 160 points
Generators in S160
(1 140)(2 141)(3 142)(4 143)(5 144)(6 129)(7 130)(8 131)(9 132)(10 133)(11 134)(12 135)(13 136)(14 137)(15 138)(16 139)(17 112)(18 97)(19 98)(20 99)(21 100)(22 101)(23 102)(24 103)(25 104)(26 105)(27 106)(28 107)(29 108)(30 109)(31 110)(32 111)(33 159)(34 160)(35 145)(36 146)(37 147)(38 148)(39 149)(40 150)(41 151)(42 152)(43 153)(44 154)(45 155)(46 156)(47 157)(48 158)(49 95)(50 96)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(57 87)(58 88)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)(65 117)(66 118)(67 119)(68 120)(69 121)(70 122)(71 123)(72 124)(73 125)(74 126)(75 127)(76 128)(77 113)(78 114)(79 115)(80 116)
(1 134 5 138 9 142 13 130)(2 143 6 131 10 135 14 139)(3 136 7 140 11 144 15 132)(4 129 8 133 12 137 16 141)(17 153 21 157 25 145 29 149)(18 146 22 150 26 154 30 158)(19 155 23 159 27 147 31 151)(20 148 24 152 28 156 32 160)(33 106 37 110 41 98 45 102)(34 99 38 103 42 107 46 111)(35 108 39 112 43 100 47 104)(36 101 40 105 44 109 48 97)(49 126 53 114 57 118 61 122)(50 119 54 123 58 127 62 115)(51 128 55 116 59 120 63 124)(52 121 56 125 60 113 64 117)(65 82 69 86 73 90 77 94)(66 91 70 95 74 83 78 87)(67 84 71 88 75 92 79 96)(68 93 72 81 76 85 80 89)
(1 60 29 45 67)(2 46 61 68 30)(3 69 47 31 62)(4 32 70 63 48)(5 64 17 33 71)(6 34 49 72 18)(7 73 35 19 50)(8 20 74 51 36)(9 52 21 37 75)(10 38 53 76 22)(11 77 39 23 54)(12 24 78 55 40)(13 56 25 41 79)(14 42 57 80 26)(15 65 43 27 58)(16 28 66 59 44)(81 146 131 99 126)(82 100 147 127 132)(83 128 101 133 148)(84 134 113 149 102)(85 150 135 103 114)(86 104 151 115 136)(87 116 105 137 152)(88 138 117 153 106)(89 154 139 107 118)(90 108 155 119 140)(91 120 109 141 156)(92 142 121 157 110)(93 158 143 111 122)(94 112 159 123 144)(95 124 97 129 160)(96 130 125 145 98)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,140)(2,141)(3,142)(4,143)(5,144)(6,129)(7,130)(8,131)(9,132)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,112)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,159)(34,160)(35,145)(36,146)(37,147)(38,148)(39,149)(40,150)(41,151)(42,152)(43,153)(44,154)(45,155)(46,156)(47,157)(48,158)(49,95)(50,96)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,117)(66,118)(67,119)(68,120)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,113)(78,114)(79,115)(80,116), (1,134,5,138,9,142,13,130)(2,143,6,131,10,135,14,139)(3,136,7,140,11,144,15,132)(4,129,8,133,12,137,16,141)(17,153,21,157,25,145,29,149)(18,146,22,150,26,154,30,158)(19,155,23,159,27,147,31,151)(20,148,24,152,28,156,32,160)(33,106,37,110,41,98,45,102)(34,99,38,103,42,107,46,111)(35,108,39,112,43,100,47,104)(36,101,40,105,44,109,48,97)(49,126,53,114,57,118,61,122)(50,119,54,123,58,127,62,115)(51,128,55,116,59,120,63,124)(52,121,56,125,60,113,64,117)(65,82,69,86,73,90,77,94)(66,91,70,95,74,83,78,87)(67,84,71,88,75,92,79,96)(68,93,72,81,76,85,80,89), (1,60,29,45,67)(2,46,61,68,30)(3,69,47,31,62)(4,32,70,63,48)(5,64,17,33,71)(6,34,49,72,18)(7,73,35,19,50)(8,20,74,51,36)(9,52,21,37,75)(10,38,53,76,22)(11,77,39,23,54)(12,24,78,55,40)(13,56,25,41,79)(14,42,57,80,26)(15,65,43,27,58)(16,28,66,59,44)(81,146,131,99,126)(82,100,147,127,132)(83,128,101,133,148)(84,134,113,149,102)(85,150,135,103,114)(86,104,151,115,136)(87,116,105,137,152)(88,138,117,153,106)(89,154,139,107,118)(90,108,155,119,140)(91,120,109,141,156)(92,142,121,157,110)(93,158,143,111,122)(94,112,159,123,144)(95,124,97,129,160)(96,130,125,145,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,140)(2,141)(3,142)(4,143)(5,144)(6,129)(7,130)(8,131)(9,132)(10,133)(11,134)(12,135)(13,136)(14,137)(15,138)(16,139)(17,112)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,159)(34,160)(35,145)(36,146)(37,147)(38,148)(39,149)(40,150)(41,151)(42,152)(43,153)(44,154)(45,155)(46,156)(47,157)(48,158)(49,95)(50,96)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,117)(66,118)(67,119)(68,120)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,113)(78,114)(79,115)(80,116), (1,134,5,138,9,142,13,130)(2,143,6,131,10,135,14,139)(3,136,7,140,11,144,15,132)(4,129,8,133,12,137,16,141)(17,153,21,157,25,145,29,149)(18,146,22,150,26,154,30,158)(19,155,23,159,27,147,31,151)(20,148,24,152,28,156,32,160)(33,106,37,110,41,98,45,102)(34,99,38,103,42,107,46,111)(35,108,39,112,43,100,47,104)(36,101,40,105,44,109,48,97)(49,126,53,114,57,118,61,122)(50,119,54,123,58,127,62,115)(51,128,55,116,59,120,63,124)(52,121,56,125,60,113,64,117)(65,82,69,86,73,90,77,94)(66,91,70,95,74,83,78,87)(67,84,71,88,75,92,79,96)(68,93,72,81,76,85,80,89), (1,60,29,45,67)(2,46,61,68,30)(3,69,47,31,62)(4,32,70,63,48)(5,64,17,33,71)(6,34,49,72,18)(7,73,35,19,50)(8,20,74,51,36)(9,52,21,37,75)(10,38,53,76,22)(11,77,39,23,54)(12,24,78,55,40)(13,56,25,41,79)(14,42,57,80,26)(15,65,43,27,58)(16,28,66,59,44)(81,146,131,99,126)(82,100,147,127,132)(83,128,101,133,148)(84,134,113,149,102)(85,150,135,103,114)(86,104,151,115,136)(87,116,105,137,152)(88,138,117,153,106)(89,154,139,107,118)(90,108,155,119,140)(91,120,109,141,156)(92,142,121,157,110)(93,158,143,111,122)(94,112,159,123,144)(95,124,97,129,160)(96,130,125,145,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,140),(2,141),(3,142),(4,143),(5,144),(6,129),(7,130),(8,131),(9,132),(10,133),(11,134),(12,135),(13,136),(14,137),(15,138),(16,139),(17,112),(18,97),(19,98),(20,99),(21,100),(22,101),(23,102),(24,103),(25,104),(26,105),(27,106),(28,107),(29,108),(30,109),(31,110),(32,111),(33,159),(34,160),(35,145),(36,146),(37,147),(38,148),(39,149),(40,150),(41,151),(42,152),(43,153),(44,154),(45,155),(46,156),(47,157),(48,158),(49,95),(50,96),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(57,87),(58,88),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94),(65,117),(66,118),(67,119),(68,120),(69,121),(70,122),(71,123),(72,124),(73,125),(74,126),(75,127),(76,128),(77,113),(78,114),(79,115),(80,116)], [(1,134,5,138,9,142,13,130),(2,143,6,131,10,135,14,139),(3,136,7,140,11,144,15,132),(4,129,8,133,12,137,16,141),(17,153,21,157,25,145,29,149),(18,146,22,150,26,154,30,158),(19,155,23,159,27,147,31,151),(20,148,24,152,28,156,32,160),(33,106,37,110,41,98,45,102),(34,99,38,103,42,107,46,111),(35,108,39,112,43,100,47,104),(36,101,40,105,44,109,48,97),(49,126,53,114,57,118,61,122),(50,119,54,123,58,127,62,115),(51,128,55,116,59,120,63,124),(52,121,56,125,60,113,64,117),(65,82,69,86,73,90,77,94),(66,91,70,95,74,83,78,87),(67,84,71,88,75,92,79,96),(68,93,72,81,76,85,80,89)], [(1,60,29,45,67),(2,46,61,68,30),(3,69,47,31,62),(4,32,70,63,48),(5,64,17,33,71),(6,34,49,72,18),(7,73,35,19,50),(8,20,74,51,36),(9,52,21,37,75),(10,38,53,76,22),(11,77,39,23,54),(12,24,78,55,40),(13,56,25,41,79),(14,42,57,80,26),(15,65,43,27,58),(16,28,66,59,44),(81,146,131,99,126),(82,100,147,127,132),(83,128,101,133,148),(84,134,113,149,102),(85,150,135,103,114),(86,104,151,115,136),(87,116,105,137,152),(88,138,117,153,106),(89,154,139,107,118),(90,108,155,119,140),(91,120,109,141,156),(92,142,121,157,110),(93,158,143,111,122),(94,112,159,123,144),(95,124,97,129,160),(96,130,125,145,98)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F 5 8A8B8C8D8E···8L10A10B10C16A···16P20A20B20C20D40A···40H
order122222444444588888···810101016···162020202040···40
size1111101011111010422225···544410···1044444···4

56 irreducible representations

dim11111111112444444
type+++++++
imageC1C2C2C2C4C4C4C8C8C8M5(2)F5C2×F5C2×F5D5⋊C8D5⋊C8C8.F5
kernelC2×C8.F5C8.F5C2×C5⋊C16D5×C2×C8C8×D5C2×C40C2×C4×D5C4×D5C2×Dic5C22×D5C10C2×C8C8C2×C4C4C22C2
# reps14214228448121228

Matrix representation of C2×C8.F5 in GL6(𝔽241)

100000
010000
00240000
00024000
00002400
00000240
,
23300000
6380000
00240000
00024000
00002400
00000240
,
100000
010000
00240100
00240010
00240001
00240000
,
1910000
1292220000
001736830
00176680173
00173068176
000368173

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[233,63,0,0,0,0,0,8,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,240,240,240,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[19,129,0,0,0,0,1,222,0,0,0,0,0,0,173,176,173,0,0,0,68,68,0,3,0,0,3,0,68,68,0,0,0,173,176,173] >;

C2×C8.F5 in GAP, Magma, Sage, TeX

C_2\times C_8.F_5
% in TeX

G:=Group("C2xC8.F5");
// GroupNames label

G:=SmallGroup(320,1052);
// by ID

G=gap.SmallGroup(320,1052);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,100,80,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^5=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽