Extensions 1→N→G→Q→1 with N=Dic5⋊D4 and Q=C2

Direct product G=N×Q with N=Dic5⋊D4 and Q=C2
dρLabelID
C2×Dic5⋊D4160C2xDic5:D4320,1474

Semidirect products G=N:Q with N=Dic5⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic5⋊D41C2 = C24.56D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:1C2320,1258
Dic5⋊D42C2 = C244D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:2C2320,1262
Dic5⋊D43C2 = C24.33D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:3C2320,1263
Dic5⋊D44C2 = C24.34D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:4C2320,1264
Dic5⋊D45C2 = C24.35D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:5C2320,1265
Dic5⋊D46C2 = C24.36D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:6C2320,1267
Dic5⋊D47C2 = C20⋊(C4○D4)φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:7C2320,1268
Dic5⋊D48C2 = C10.682- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:8C2320,1269
Dic5⋊D49C2 = Dic1019D4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:9C2320,1270
Dic5⋊D410C2 = Dic1020D4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:10C2320,1271
Dic5⋊D411C2 = D5×C4⋊D4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:11C2320,1276
Dic5⋊D412C2 = C10.372+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:12C2320,1277
Dic5⋊D413C2 = C10.392+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:13C2320,1280
Dic5⋊D414C2 = C10.422+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:14C2320,1285
Dic5⋊D415C2 = C10.452+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:15C2320,1288
Dic5⋊D416C2 = C10.1152+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:16C2320,1290
Dic5⋊D417C2 = C10.472+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:17C2320,1291
Dic5⋊D418C2 = C10.482+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:18C2320,1292
Dic5⋊D419C2 = C10.742- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:19C2320,1293
Dic5⋊D420C2 = C10.1212+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:20C2320,1326
Dic5⋊D421C2 = C10.822- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:21C2320,1327
Dic5⋊D422C2 = C10.642+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:22C2320,1333
Dic5⋊D423C2 = C10.662+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:23C2320,1335
Dic5⋊D424C2 = C10.692+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:24C2320,1339
Dic5⋊D425C2 = C42.104D10φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:25C2320,1212
Dic5⋊D426C2 = Dic1023D4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:26C2320,1224
Dic5⋊D427C2 = C4217D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:27C2320,1232
Dic5⋊D428C2 = C42.119D10φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:28C2320,1237
Dic5⋊D429C2 = C10.342+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:29C2320,1273
Dic5⋊D430C2 = C10.402+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:30C2320,1282
Dic5⋊D431C2 = C10.442+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:31C2320,1287
Dic5⋊D432C2 = C10.462+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:32C2320,1289
Dic5⋊D433C2 = C42.138D10φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:33C2320,1342
Dic5⋊D434C2 = C4220D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:34C2320,1350
Dic5⋊D435C2 = C42.145D10φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:35C2320,1356
Dic5⋊D436C2 = C4226D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:36C2320,1387
Dic5⋊D437C2 = Dic1011D4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:37C2320,1390
Dic5⋊D438C2 = C42.168D10φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:38C2320,1391
Dic5⋊D439C2 = C4228D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:39C2320,1392
Dic5⋊D440C2 = D4×C5⋊D4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:40C2320,1473
Dic5⋊D441C2 = C248D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:41C2320,1476
Dic5⋊D442C2 = C24.42D10φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:42C2320,1478
Dic5⋊D443C2 = C10.1042- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:43C2320,1496
Dic5⋊D444C2 = C10.1452+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D480Dic5:D4:44C2320,1501
Dic5⋊D445C2 = C10.1472+ 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4:45C2320,1505
Dic5⋊D446C2 = C4212D10φ: trivial image80Dic5:D4:46C2320,1219
Dic5⋊D447C2 = (C2×C20)⋊17D4φ: trivial image160Dic5:D4:47C2320,1504

Non-split extensions G=N.Q with N=Dic5⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic5⋊D4.1C2 = C4⋊C4.197D10φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4.1C2320,1321
Dic5⋊D4.2C2 = C10.842- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4.2C2320,1334
Dic5⋊D4.3C2 = C10.852- 1+4φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4.3C2320,1337
Dic5⋊D4.4C2 = C42.118D10φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4.4C2320,1236
Dic5⋊D4.5C2 = C42.137D10φ: C2/C1C2 ⊆ Out Dic5⋊D4160Dic5:D4.5C2320,1341
Dic5⋊D4.6C2 = C42.102D10φ: trivial image160Dic5:D4.6C2320,1210

׿
×
𝔽