Copied to
clipboard

G = C10.452+ 1+4order 320 = 26·5

45th non-split extension by C10 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.452+ 1+4, C20⋊Q821C2, C4⋊D419D5, C202D425C2, C4⋊C4.183D10, (D4×Dic5)⋊23C2, (C2×D4).94D10, (C2×C20).43C23, C22⋊C4.51D10, Dic5⋊D415C2, C20.204(C4○D4), C20.17D419C2, C4.97(D42D5), (C2×C10).160C24, (C22×C4).227D10, C2.47(D46D10), C23.20(C22×D5), Dic5.39(C4○D4), Dic5.5D421C2, (D4×C10).126C22, C23.11D107C2, C4⋊Dic5.373C22, (C2×Dic5).79C23, (C22×D5).67C23, C22.181(C23×D5), D10⋊C4.16C22, C23.21D1027C2, (C22×C20).244C22, (C22×C10).189C23, C53(C22.49C24), (C4×Dic5).105C22, C10.D4.19C22, C23.D5.112C22, (C2×Dic10).162C22, (C22×Dic5).113C22, (C4×C5⋊D4)⋊20C2, C2.44(D5×C4○D4), C4⋊C47D521C2, (C5×C4⋊D4)⋊22C2, (C2×C4×D5).96C22, C10.157(C2×C4○D4), C2.39(C2×D42D5), (C5×C4⋊C4).148C22, (C2×C4).588(C22×D5), (C2×C5⋊D4).33C22, (C5×C22⋊C4).17C22, SmallGroup(320,1288)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.452+ 1+4
C1C5C10C2×C10C22×D5C2×C5⋊D4C202D4 — C10.452+ 1+4
C5C2×C10 — C10.452+ 1+4
C1C22C4⋊D4

Generators and relations for C10.452+ 1+4
 G = < a,b,c,d,e | a10=b4=c2=e2=1, d2=a5b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=a5c, ede=a5b2d >

Subgroups: 790 in 236 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×11], C22, C22 [×12], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×15], D4 [×8], Q8 [×2], C23, C23 [×2], C23, D5, C10 [×3], C10 [×3], C42 [×5], C22⋊C4 [×2], C22⋊C4 [×10], C4⋊C4, C4⋊C4 [×5], C22×C4, C22×C4 [×3], C2×D4, C2×D4 [×2], C2×D4 [×3], C2×Q8 [×2], Dic5 [×2], Dic5 [×6], C20 [×2], C20 [×3], D10 [×3], C2×C10, C2×C10 [×9], C42⋊C2 [×4], C4×D4 [×2], C4⋊D4, C4⋊D4 [×3], C4.4D4 [×4], C4⋊Q8, Dic10 [×2], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×4], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×2], C2×C20 [×2], C5×D4 [×4], C22×D5, C22×C10, C22×C10 [×2], C22.49C24, C4×Dic5, C4×Dic5 [×4], C10.D4, C10.D4 [×2], C4⋊Dic5 [×2], D10⋊C4, D10⋊C4 [×2], C23.D5, C23.D5 [×6], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5, C22×Dic5 [×2], C2×C5⋊D4, C2×C5⋊D4 [×2], C22×C20, D4×C10, D4×C10 [×2], C23.11D10 [×2], Dic5.5D4 [×2], C20⋊Q8, C4⋊C47D5, C23.21D10, C4×C5⋊D4, D4×Dic5, C20.17D4 [×2], C202D4, Dic5⋊D4 [×2], C5×C4⋊D4, C10.452+ 1+4
Quotients: C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2+ 1+4, C22×D5 [×7], C22.49C24, D42D5 [×2], C23×D5, C2×D42D5, D46D10, D5×C4○D4, C10.452+ 1+4

Smallest permutation representation of C10.452+ 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 138 13 128)(2 139 14 129)(3 140 15 130)(4 131 16 121)(5 132 17 122)(6 133 18 123)(7 134 19 124)(8 135 20 125)(9 136 11 126)(10 137 12 127)(21 156 31 146)(22 157 32 147)(23 158 33 148)(24 159 34 149)(25 160 35 150)(26 151 36 141)(27 152 37 142)(28 153 38 143)(29 154 39 144)(30 155 40 145)(41 96 51 86)(42 97 52 87)(43 98 53 88)(44 99 54 89)(45 100 55 90)(46 91 56 81)(47 92 57 82)(48 93 58 83)(49 94 59 84)(50 95 60 85)(61 116 71 106)(62 117 72 107)(63 118 73 108)(64 119 74 109)(65 120 75 110)(66 111 76 101)(67 112 77 102)(68 113 78 103)(69 114 79 104)(70 115 80 105)
(1 83)(2 84)(3 85)(4 86)(5 87)(6 88)(7 89)(8 90)(9 81)(10 82)(11 91)(12 92)(13 93)(14 94)(15 95)(16 96)(17 97)(18 98)(19 99)(20 100)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)
(1 38 18 23)(2 37 19 22)(3 36 20 21)(4 35 11 30)(5 34 12 29)(6 33 13 28)(7 32 14 27)(8 31 15 26)(9 40 16 25)(10 39 17 24)(41 80 56 65)(42 79 57 64)(43 78 58 63)(44 77 59 62)(45 76 60 61)(46 75 51 70)(47 74 52 69)(48 73 53 68)(49 72 54 67)(50 71 55 66)(81 120 96 105)(82 119 97 104)(83 118 98 103)(84 117 99 102)(85 116 100 101)(86 115 91 110)(87 114 92 109)(88 113 93 108)(89 112 94 107)(90 111 95 106)(121 160 136 145)(122 159 137 144)(123 158 138 143)(124 157 139 142)(125 156 140 141)(126 155 131 150)(127 154 132 149)(128 153 133 148)(129 152 134 147)(130 151 135 146)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(81 106)(82 107)(83 108)(84 109)(85 110)(86 101)(87 102)(88 103)(89 104)(90 105)(91 116)(92 117)(93 118)(94 119)(95 120)(96 111)(97 112)(98 113)(99 114)(100 115)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,13,128)(2,139,14,129)(3,140,15,130)(4,131,16,121)(5,132,17,122)(6,133,18,123)(7,134,19,124)(8,135,20,125)(9,136,11,126)(10,137,12,127)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,151,36,141)(27,152,37,142)(28,153,38,143)(29,154,39,144)(30,155,40,145)(41,96,51,86)(42,97,52,87)(43,98,53,88)(44,99,54,89)(45,100,55,90)(46,91,56,81)(47,92,57,82)(48,93,58,83)(49,94,59,84)(50,95,60,85)(61,116,71,106)(62,117,72,107)(63,118,73,108)(64,119,74,109)(65,120,75,110)(66,111,76,101)(67,112,77,102)(68,113,78,103)(69,114,79,104)(70,115,80,105), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,81)(10,82)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,38,18,23)(2,37,19,22)(3,36,20,21)(4,35,11,30)(5,34,12,29)(6,33,13,28)(7,32,14,27)(8,31,15,26)(9,40,16,25)(10,39,17,24)(41,80,56,65)(42,79,57,64)(43,78,58,63)(44,77,59,62)(45,76,60,61)(46,75,51,70)(47,74,52,69)(48,73,53,68)(49,72,54,67)(50,71,55,66)(81,120,96,105)(82,119,97,104)(83,118,98,103)(84,117,99,102)(85,116,100,101)(86,115,91,110)(87,114,92,109)(88,113,93,108)(89,112,94,107)(90,111,95,106)(121,160,136,145)(122,159,137,144)(123,158,138,143)(124,157,139,142)(125,156,140,141)(126,155,131,150)(127,154,132,149)(128,153,133,148)(129,152,134,147)(130,151,135,146), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,116)(92,117)(93,118)(94,119)(95,120)(96,111)(97,112)(98,113)(99,114)(100,115)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,13,128)(2,139,14,129)(3,140,15,130)(4,131,16,121)(5,132,17,122)(6,133,18,123)(7,134,19,124)(8,135,20,125)(9,136,11,126)(10,137,12,127)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,151,36,141)(27,152,37,142)(28,153,38,143)(29,154,39,144)(30,155,40,145)(41,96,51,86)(42,97,52,87)(43,98,53,88)(44,99,54,89)(45,100,55,90)(46,91,56,81)(47,92,57,82)(48,93,58,83)(49,94,59,84)(50,95,60,85)(61,116,71,106)(62,117,72,107)(63,118,73,108)(64,119,74,109)(65,120,75,110)(66,111,76,101)(67,112,77,102)(68,113,78,103)(69,114,79,104)(70,115,80,105), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,81)(10,82)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,38,18,23)(2,37,19,22)(3,36,20,21)(4,35,11,30)(5,34,12,29)(6,33,13,28)(7,32,14,27)(8,31,15,26)(9,40,16,25)(10,39,17,24)(41,80,56,65)(42,79,57,64)(43,78,58,63)(44,77,59,62)(45,76,60,61)(46,75,51,70)(47,74,52,69)(48,73,53,68)(49,72,54,67)(50,71,55,66)(81,120,96,105)(82,119,97,104)(83,118,98,103)(84,117,99,102)(85,116,100,101)(86,115,91,110)(87,114,92,109)(88,113,93,108)(89,112,94,107)(90,111,95,106)(121,160,136,145)(122,159,137,144)(123,158,138,143)(124,157,139,142)(125,156,140,141)(126,155,131,150)(127,154,132,149)(128,153,133,148)(129,152,134,147)(130,151,135,146), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,116)(92,117)(93,118)(94,119)(95,120)(96,111)(97,112)(98,113)(99,114)(100,115)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,138,13,128),(2,139,14,129),(3,140,15,130),(4,131,16,121),(5,132,17,122),(6,133,18,123),(7,134,19,124),(8,135,20,125),(9,136,11,126),(10,137,12,127),(21,156,31,146),(22,157,32,147),(23,158,33,148),(24,159,34,149),(25,160,35,150),(26,151,36,141),(27,152,37,142),(28,153,38,143),(29,154,39,144),(30,155,40,145),(41,96,51,86),(42,97,52,87),(43,98,53,88),(44,99,54,89),(45,100,55,90),(46,91,56,81),(47,92,57,82),(48,93,58,83),(49,94,59,84),(50,95,60,85),(61,116,71,106),(62,117,72,107),(63,118,73,108),(64,119,74,109),(65,120,75,110),(66,111,76,101),(67,112,77,102),(68,113,78,103),(69,114,79,104),(70,115,80,105)], [(1,83),(2,84),(3,85),(4,86),(5,87),(6,88),(7,89),(8,90),(9,81),(10,82),(11,91),(12,92),(13,93),(14,94),(15,95),(16,96),(17,97),(18,98),(19,99),(20,100),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)], [(1,38,18,23),(2,37,19,22),(3,36,20,21),(4,35,11,30),(5,34,12,29),(6,33,13,28),(7,32,14,27),(8,31,15,26),(9,40,16,25),(10,39,17,24),(41,80,56,65),(42,79,57,64),(43,78,58,63),(44,77,59,62),(45,76,60,61),(46,75,51,70),(47,74,52,69),(48,73,53,68),(49,72,54,67),(50,71,55,66),(81,120,96,105),(82,119,97,104),(83,118,98,103),(84,117,99,102),(85,116,100,101),(86,115,91,110),(87,114,92,109),(88,113,93,108),(89,112,94,107),(90,111,95,106),(121,160,136,145),(122,159,137,144),(123,158,138,143),(124,157,139,142),(125,156,140,141),(126,155,131,150),(127,154,132,149),(128,153,133,148),(129,152,134,147),(130,151,135,146)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(81,106),(82,107),(83,108),(84,109),(85,110),(86,101),(87,102),(88,103),(89,104),(90,105),(91,116),(92,117),(93,118),(94,119),(95,120),(96,111),(97,112),(98,113),(99,114),(100,115),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G···4N4O4P4Q5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order122222224444444···44445510···10101010101010101020···2020202020
size11114442022224410···10202020222···2444488884···48888

53 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D102+ 1+4D42D5D46D10D5×C4○D4
kernelC10.452+ 1+4C23.11D10Dic5.5D4C20⋊Q8C4⋊C47D5C23.21D10C4×C5⋊D4D4×Dic5C20.17D4C202D4Dic5⋊D4C5×C4⋊D4C4⋊D4Dic5C20C22⋊C4C4⋊C4C22×C4C2×D4C10C4C2C2
# reps12211111212124442261444

Matrix representation of C10.452+ 1+4 in GL6(𝔽41)

4000000
0400000
00343500
007000
0000400
0000040
,
900000
9320000
001000
000100
0000400
0000040
,
1390000
0400000
001000
000100
00001536
00001226
,
100000
010000
00343500
008700
00001237
00002629
,
100000
1400000
001000
000100
00001237
0000529

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,35,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,9,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,39,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,12,0,0,0,0,36,26],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,8,0,0,0,0,35,7,0,0,0,0,0,0,12,26,0,0,0,0,37,29],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,5,0,0,0,0,37,29] >;

C10.452+ 1+4 in GAP, Magma, Sage, TeX

C_{10}._{45}2_+^{1+4}
% in TeX

G:=Group("C10.45ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1288);
// by ID

G=gap.SmallGroup(320,1288);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,758,219,1571,570,297,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=e^2=1,d^2=a^5*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^5*c,e*d*e=a^5*b^2*d>;
// generators/relations

׿
×
𝔽