Copied to
clipboard

## G = C10.452+ 1+4order 320 = 26·5

### 45th non-split extension by C10 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

Series: Derived Chief Lower central Upper central

 Derived series C1 — C2×C10 — C10.452+ 1+4
 Chief series C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C5⋊D4 — C20⋊2D4 — C10.452+ 1+4
 Lower central C5 — C2×C10 — C10.452+ 1+4
 Upper central C1 — C22 — C4⋊D4

Generators and relations for C10.452+ 1+4
G = < a,b,c,d,e | a10=b4=c2=e2=1, d2=a5b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=a5c, ede=a5b2d >

Subgroups: 790 in 236 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×11], C22, C22 [×12], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×15], D4 [×8], Q8 [×2], C23, C23 [×2], C23, D5, C10 [×3], C10 [×3], C42 [×5], C22⋊C4 [×2], C22⋊C4 [×10], C4⋊C4, C4⋊C4 [×5], C22×C4, C22×C4 [×3], C2×D4, C2×D4 [×2], C2×D4 [×3], C2×Q8 [×2], Dic5 [×2], Dic5 [×6], C20 [×2], C20 [×3], D10 [×3], C2×C10, C2×C10 [×9], C42⋊C2 [×4], C4×D4 [×2], C4⋊D4, C4⋊D4 [×3], C4.4D4 [×4], C4⋊Q8, Dic10 [×2], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×4], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×2], C2×C20 [×2], C5×D4 [×4], C22×D5, C22×C10, C22×C10 [×2], C22.49C24, C4×Dic5, C4×Dic5 [×4], C10.D4, C10.D4 [×2], C4⋊Dic5 [×2], D10⋊C4, D10⋊C4 [×2], C23.D5, C23.D5 [×6], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5, C22×Dic5 [×2], C2×C5⋊D4, C2×C5⋊D4 [×2], C22×C20, D4×C10, D4×C10 [×2], C23.11D10 [×2], Dic5.5D4 [×2], C20⋊Q8, C4⋊C47D5, C23.21D10, C4×C5⋊D4, D4×Dic5, C20.17D4 [×2], C202D4, Dic5⋊D4 [×2], C5×C4⋊D4, C10.452+ 1+4
Quotients: C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2+ 1+4, C22×D5 [×7], C22.49C24, D42D5 [×2], C23×D5, C2×D42D5, D46D10, D5×C4○D4, C10.452+ 1+4

Smallest permutation representation of C10.452+ 1+4
On 160 points
Generators in S160
```(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 138 13 128)(2 139 14 129)(3 140 15 130)(4 131 16 121)(5 132 17 122)(6 133 18 123)(7 134 19 124)(8 135 20 125)(9 136 11 126)(10 137 12 127)(21 156 31 146)(22 157 32 147)(23 158 33 148)(24 159 34 149)(25 160 35 150)(26 151 36 141)(27 152 37 142)(28 153 38 143)(29 154 39 144)(30 155 40 145)(41 96 51 86)(42 97 52 87)(43 98 53 88)(44 99 54 89)(45 100 55 90)(46 91 56 81)(47 92 57 82)(48 93 58 83)(49 94 59 84)(50 95 60 85)(61 116 71 106)(62 117 72 107)(63 118 73 108)(64 119 74 109)(65 120 75 110)(66 111 76 101)(67 112 77 102)(68 113 78 103)(69 114 79 104)(70 115 80 105)
(1 83)(2 84)(3 85)(4 86)(5 87)(6 88)(7 89)(8 90)(9 81)(10 82)(11 91)(12 92)(13 93)(14 94)(15 95)(16 96)(17 97)(18 98)(19 99)(20 100)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)
(1 38 18 23)(2 37 19 22)(3 36 20 21)(4 35 11 30)(5 34 12 29)(6 33 13 28)(7 32 14 27)(8 31 15 26)(9 40 16 25)(10 39 17 24)(41 80 56 65)(42 79 57 64)(43 78 58 63)(44 77 59 62)(45 76 60 61)(46 75 51 70)(47 74 52 69)(48 73 53 68)(49 72 54 67)(50 71 55 66)(81 120 96 105)(82 119 97 104)(83 118 98 103)(84 117 99 102)(85 116 100 101)(86 115 91 110)(87 114 92 109)(88 113 93 108)(89 112 94 107)(90 111 95 106)(121 160 136 145)(122 159 137 144)(123 158 138 143)(124 157 139 142)(125 156 140 141)(126 155 131 150)(127 154 132 149)(128 153 133 148)(129 152 134 147)(130 151 135 146)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(81 106)(82 107)(83 108)(84 109)(85 110)(86 101)(87 102)(88 103)(89 104)(90 105)(91 116)(92 117)(93 118)(94 119)(95 120)(96 111)(97 112)(98 113)(99 114)(100 115)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)```

`G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,13,128)(2,139,14,129)(3,140,15,130)(4,131,16,121)(5,132,17,122)(6,133,18,123)(7,134,19,124)(8,135,20,125)(9,136,11,126)(10,137,12,127)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,151,36,141)(27,152,37,142)(28,153,38,143)(29,154,39,144)(30,155,40,145)(41,96,51,86)(42,97,52,87)(43,98,53,88)(44,99,54,89)(45,100,55,90)(46,91,56,81)(47,92,57,82)(48,93,58,83)(49,94,59,84)(50,95,60,85)(61,116,71,106)(62,117,72,107)(63,118,73,108)(64,119,74,109)(65,120,75,110)(66,111,76,101)(67,112,77,102)(68,113,78,103)(69,114,79,104)(70,115,80,105), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,81)(10,82)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,38,18,23)(2,37,19,22)(3,36,20,21)(4,35,11,30)(5,34,12,29)(6,33,13,28)(7,32,14,27)(8,31,15,26)(9,40,16,25)(10,39,17,24)(41,80,56,65)(42,79,57,64)(43,78,58,63)(44,77,59,62)(45,76,60,61)(46,75,51,70)(47,74,52,69)(48,73,53,68)(49,72,54,67)(50,71,55,66)(81,120,96,105)(82,119,97,104)(83,118,98,103)(84,117,99,102)(85,116,100,101)(86,115,91,110)(87,114,92,109)(88,113,93,108)(89,112,94,107)(90,111,95,106)(121,160,136,145)(122,159,137,144)(123,158,138,143)(124,157,139,142)(125,156,140,141)(126,155,131,150)(127,154,132,149)(128,153,133,148)(129,152,134,147)(130,151,135,146), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,116)(92,117)(93,118)(94,119)(95,120)(96,111)(97,112)(98,113)(99,114)(100,115)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,13,128)(2,139,14,129)(3,140,15,130)(4,131,16,121)(5,132,17,122)(6,133,18,123)(7,134,19,124)(8,135,20,125)(9,136,11,126)(10,137,12,127)(21,156,31,146)(22,157,32,147)(23,158,33,148)(24,159,34,149)(25,160,35,150)(26,151,36,141)(27,152,37,142)(28,153,38,143)(29,154,39,144)(30,155,40,145)(41,96,51,86)(42,97,52,87)(43,98,53,88)(44,99,54,89)(45,100,55,90)(46,91,56,81)(47,92,57,82)(48,93,58,83)(49,94,59,84)(50,95,60,85)(61,116,71,106)(62,117,72,107)(63,118,73,108)(64,119,74,109)(65,120,75,110)(66,111,76,101)(67,112,77,102)(68,113,78,103)(69,114,79,104)(70,115,80,105), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,81)(10,82)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,38,18,23)(2,37,19,22)(3,36,20,21)(4,35,11,30)(5,34,12,29)(6,33,13,28)(7,32,14,27)(8,31,15,26)(9,40,16,25)(10,39,17,24)(41,80,56,65)(42,79,57,64)(43,78,58,63)(44,77,59,62)(45,76,60,61)(46,75,51,70)(47,74,52,69)(48,73,53,68)(49,72,54,67)(50,71,55,66)(81,120,96,105)(82,119,97,104)(83,118,98,103)(84,117,99,102)(85,116,100,101)(86,115,91,110)(87,114,92,109)(88,113,93,108)(89,112,94,107)(90,111,95,106)(121,160,136,145)(122,159,137,144)(123,158,138,143)(124,157,139,142)(125,156,140,141)(126,155,131,150)(127,154,132,149)(128,153,133,148)(129,152,134,147)(130,151,135,146), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,106)(82,107)(83,108)(84,109)(85,110)(86,101)(87,102)(88,103)(89,104)(90,105)(91,116)(92,117)(93,118)(94,119)(95,120)(96,111)(97,112)(98,113)(99,114)(100,115)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160) );`

`G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,138,13,128),(2,139,14,129),(3,140,15,130),(4,131,16,121),(5,132,17,122),(6,133,18,123),(7,134,19,124),(8,135,20,125),(9,136,11,126),(10,137,12,127),(21,156,31,146),(22,157,32,147),(23,158,33,148),(24,159,34,149),(25,160,35,150),(26,151,36,141),(27,152,37,142),(28,153,38,143),(29,154,39,144),(30,155,40,145),(41,96,51,86),(42,97,52,87),(43,98,53,88),(44,99,54,89),(45,100,55,90),(46,91,56,81),(47,92,57,82),(48,93,58,83),(49,94,59,84),(50,95,60,85),(61,116,71,106),(62,117,72,107),(63,118,73,108),(64,119,74,109),(65,120,75,110),(66,111,76,101),(67,112,77,102),(68,113,78,103),(69,114,79,104),(70,115,80,105)], [(1,83),(2,84),(3,85),(4,86),(5,87),(6,88),(7,89),(8,90),(9,81),(10,82),(11,91),(12,92),(13,93),(14,94),(15,95),(16,96),(17,97),(18,98),(19,99),(20,100),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)], [(1,38,18,23),(2,37,19,22),(3,36,20,21),(4,35,11,30),(5,34,12,29),(6,33,13,28),(7,32,14,27),(8,31,15,26),(9,40,16,25),(10,39,17,24),(41,80,56,65),(42,79,57,64),(43,78,58,63),(44,77,59,62),(45,76,60,61),(46,75,51,70),(47,74,52,69),(48,73,53,68),(49,72,54,67),(50,71,55,66),(81,120,96,105),(82,119,97,104),(83,118,98,103),(84,117,99,102),(85,116,100,101),(86,115,91,110),(87,114,92,109),(88,113,93,108),(89,112,94,107),(90,111,95,106),(121,160,136,145),(122,159,137,144),(123,158,138,143),(124,157,139,142),(125,156,140,141),(126,155,131,150),(127,154,132,149),(128,153,133,148),(129,152,134,147),(130,151,135,146)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(81,106),(82,107),(83,108),(84,109),(85,110),(86,101),(87,102),(88,103),(89,104),(90,105),(91,116),(92,117),(93,118),(94,119),(95,120),(96,111),(97,112),(98,113),(99,114),(100,115),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)])`

53 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 4A 4B 4C 4D 4E 4F 4G ··· 4N 4O 4P 4Q 5A 5B 10A ··· 10F 10G 10H 10I 10J 10K 10L 10M 10N 20A ··· 20H 20I 20J 20K 20L order 1 2 2 2 2 2 2 2 4 4 4 4 4 4 4 ··· 4 4 4 4 5 5 10 ··· 10 10 10 10 10 10 10 10 10 20 ··· 20 20 20 20 20 size 1 1 1 1 4 4 4 20 2 2 2 2 4 4 10 ··· 10 20 20 20 2 2 2 ··· 2 4 4 4 4 8 8 8 8 4 ··· 4 8 8 8 8

53 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 4 4 4 4 type + + + + + + + + + + + + + + + + + + - image C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 D5 C4○D4 C4○D4 D10 D10 D10 D10 2+ 1+4 D4⋊2D5 D4⋊6D10 D5×C4○D4 kernel C10.452+ 1+4 C23.11D10 Dic5.5D4 C20⋊Q8 C4⋊C4⋊7D5 C23.21D10 C4×C5⋊D4 D4×Dic5 C20.17D4 C20⋊2D4 Dic5⋊D4 C5×C4⋊D4 C4⋊D4 Dic5 C20 C22⋊C4 C4⋊C4 C22×C4 C2×D4 C10 C4 C2 C2 # reps 1 2 2 1 1 1 1 1 2 1 2 1 2 4 4 4 2 2 6 1 4 4 4

Matrix representation of C10.452+ 1+4 in GL6(𝔽41)

 40 0 0 0 0 0 0 40 0 0 0 0 0 0 34 35 0 0 0 0 7 0 0 0 0 0 0 0 40 0 0 0 0 0 0 40
,
 9 0 0 0 0 0 9 32 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 40 0 0 0 0 0 0 40
,
 1 39 0 0 0 0 0 40 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 15 36 0 0 0 0 12 26
,
 1 0 0 0 0 0 0 1 0 0 0 0 0 0 34 35 0 0 0 0 8 7 0 0 0 0 0 0 12 37 0 0 0 0 26 29
,
 1 0 0 0 0 0 1 40 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 12 37 0 0 0 0 5 29

`G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,35,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,9,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,39,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,12,0,0,0,0,36,26],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,8,0,0,0,0,35,7,0,0,0,0,0,0,12,26,0,0,0,0,37,29],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,5,0,0,0,0,37,29] >;`

C10.452+ 1+4 in GAP, Magma, Sage, TeX

`C_{10}._{45}2_+^{1+4}`
`% in TeX`

`G:=Group("C10.45ES+(2,2)");`
`// GroupNames label`

`G:=SmallGroup(320,1288);`
`// by ID`

`G=gap.SmallGroup(320,1288);`
`# by ID`

`G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,758,219,1571,570,297,12550]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e|a^10=b^4=c^2=e^2=1,d^2=a^5*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^5*c,e*d*e=a^5*b^2*d>;`
`// generators/relations`

׿
×
𝔽