Copied to
clipboard

G = Dic5⋊D4order 160 = 25·5

2nd semidirect product of Dic5 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic53D4, C23.9D10, (C2×D4)⋊5D5, (C2×C10)⋊3D4, (D4×C10)⋊9C2, C55(C4⋊D4), C2.27(D4×D5), C10.51(C2×D4), (C2×C4).19D10, C221(C5⋊D4), C23.D512C2, D10⋊C415C2, C10.32(C4○D4), C10.D415C2, (C2×C10).54C23, (C2×C20).62C22, (C22×Dic5)⋊6C2, C2.18(D42D5), C22.61(C22×D5), (C22×C10).21C22, (C2×Dic5).41C22, (C22×D5).11C22, (C2×C5⋊D4)⋊6C2, C2.15(C2×C5⋊D4), SmallGroup(160,160)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic5⋊D4
C1C5C10C2×C10C22×D5C2×C5⋊D4 — Dic5⋊D4
C5C2×C10 — Dic5⋊D4
C1C22C2×D4

Generators and relations for Dic5⋊D4
 G = < a,b,c,d | a10=c4=d2=1, b2=a5, bab-1=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, dcd=c-1 >

Subgroups: 304 in 94 conjugacy classes, 35 normal (29 characteristic)
C1, C2 [×3], C2 [×4], C4 [×5], C22, C22 [×2], C22 [×8], C5, C2×C4, C2×C4 [×5], D4 [×6], C23 [×2], C23, D5, C10 [×3], C10 [×3], C22⋊C4 [×2], C4⋊C4, C22×C4, C2×D4, C2×D4 [×2], Dic5 [×2], Dic5 [×2], C20, D10 [×3], C2×C10, C2×C10 [×2], C2×C10 [×5], C4⋊D4, C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×4], C2×C20, C5×D4 [×2], C22×D5, C22×C10 [×2], C10.D4, D10⋊C4, C23.D5, C22×Dic5, C2×C5⋊D4 [×2], D4×C10, Dic5⋊D4
Quotients: C1, C2 [×7], C22 [×7], D4 [×4], C23, D5, C2×D4 [×2], C4○D4, D10 [×3], C4⋊D4, C5⋊D4 [×2], C22×D5, D4×D5, D42D5, C2×C5⋊D4, Dic5⋊D4

Smallest permutation representation of Dic5⋊D4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 48 6 43)(2 47 7 42)(3 46 8 41)(4 45 9 50)(5 44 10 49)(11 60 16 55)(12 59 17 54)(13 58 18 53)(14 57 19 52)(15 56 20 51)(21 39 26 34)(22 38 27 33)(23 37 28 32)(24 36 29 31)(25 35 30 40)(61 79 66 74)(62 78 67 73)(63 77 68 72)(64 76 69 71)(65 75 70 80)
(1 14 28 72)(2 15 29 73)(3 16 30 74)(4 17 21 75)(5 18 22 76)(6 19 23 77)(7 20 24 78)(8 11 25 79)(9 12 26 80)(10 13 27 71)(31 67 47 51)(32 68 48 52)(33 69 49 53)(34 70 50 54)(35 61 41 55)(36 62 42 56)(37 63 43 57)(38 64 44 58)(39 65 45 59)(40 66 46 60)
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 51)(11 45)(12 46)(13 47)(14 48)(15 49)(16 50)(17 41)(18 42)(19 43)(20 44)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,48,6,43)(2,47,7,42)(3,46,8,41)(4,45,9,50)(5,44,10,49)(11,60,16,55)(12,59,17,54)(13,58,18,53)(14,57,19,52)(15,56,20,51)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)(61,79,66,74)(62,78,67,73)(63,77,68,72)(64,76,69,71)(65,75,70,80), (1,14,28,72)(2,15,29,73)(3,16,30,74)(4,17,21,75)(5,18,22,76)(6,19,23,77)(7,20,24,78)(8,11,25,79)(9,12,26,80)(10,13,27,71)(31,67,47,51)(32,68,48,52)(33,69,49,53)(34,70,50,54)(35,61,41,55)(36,62,42,56)(37,63,43,57)(38,64,44,58)(39,65,45,59)(40,66,46,60), (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,45)(12,46)(13,47)(14,48)(15,49)(16,50)(17,41)(18,42)(19,43)(20,44)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,48,6,43)(2,47,7,42)(3,46,8,41)(4,45,9,50)(5,44,10,49)(11,60,16,55)(12,59,17,54)(13,58,18,53)(14,57,19,52)(15,56,20,51)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)(61,79,66,74)(62,78,67,73)(63,77,68,72)(64,76,69,71)(65,75,70,80), (1,14,28,72)(2,15,29,73)(3,16,30,74)(4,17,21,75)(5,18,22,76)(6,19,23,77)(7,20,24,78)(8,11,25,79)(9,12,26,80)(10,13,27,71)(31,67,47,51)(32,68,48,52)(33,69,49,53)(34,70,50,54)(35,61,41,55)(36,62,42,56)(37,63,43,57)(38,64,44,58)(39,65,45,59)(40,66,46,60), (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,45)(12,46)(13,47)(14,48)(15,49)(16,50)(17,41)(18,42)(19,43)(20,44)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,48,6,43),(2,47,7,42),(3,46,8,41),(4,45,9,50),(5,44,10,49),(11,60,16,55),(12,59,17,54),(13,58,18,53),(14,57,19,52),(15,56,20,51),(21,39,26,34),(22,38,27,33),(23,37,28,32),(24,36,29,31),(25,35,30,40),(61,79,66,74),(62,78,67,73),(63,77,68,72),(64,76,69,71),(65,75,70,80)], [(1,14,28,72),(2,15,29,73),(3,16,30,74),(4,17,21,75),(5,18,22,76),(6,19,23,77),(7,20,24,78),(8,11,25,79),(9,12,26,80),(10,13,27,71),(31,67,47,51),(32,68,48,52),(33,69,49,53),(34,70,50,54),(35,61,41,55),(36,62,42,56),(37,63,43,57),(38,64,44,58),(39,65,45,59),(40,66,46,60)], [(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,51),(11,45),(12,46),(13,47),(14,48),(15,49),(16,50),(17,41),(18,42),(19,43),(20,44),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)])

Dic5⋊D4 is a maximal subgroup of
C42.102D10  C42.104D10  C4212D10  Dic1023D4  C4217D10  C42.118D10  C42.119D10  C24.56D10  C244D10  C24.33D10  C24.34D10  C24.35D10  C24.36D10  C20⋊(C4○D4)  C10.682- 1+4  Dic1019D4  Dic1020D4  C10.342+ 1+4  D5×C4⋊D4  C10.372+ 1+4  C10.392+ 1+4  C10.402+ 1+4  C10.422+ 1+4  C10.442+ 1+4  C10.452+ 1+4  C10.462+ 1+4  C10.1152+ 1+4  C10.472+ 1+4  C10.482+ 1+4  C10.742- 1+4  C4⋊C4.197D10  C10.1212+ 1+4  C10.822- 1+4  C10.642+ 1+4  C10.842- 1+4  C10.662+ 1+4  C10.852- 1+4  C10.692+ 1+4  C42.137D10  C42.138D10  C4220D10  C42.145D10  C4226D10  Dic1011D4  C42.168D10  C4228D10  D4×C5⋊D4  C248D10  C24.42D10  C10.1042- 1+4  C10.1452+ 1+4  (C2×C20)⋊17D4  C10.1472+ 1+4  Dic5⋊D12  Dic152D4  Dic154D4  (S3×C10)⋊D4  (C2×C10)⋊4D12  Dic1518D4  Dic1512D4  Dic5⋊S4
Dic5⋊D4 is a maximal quotient of
C24.44D10  C24.4D10  C24.6D10  C24.9D10  C24.13D10  C23.45D20  C24.14D10  C24.16D10  C10.96(C4×D4)  (C2×C20).54D4  C10.90(C4×D4)  (C2×C20).56D4  (C2×C10)⋊D8  C4⋊D4⋊D5  C52C823D4  C4.(D4×D5)  C52C824D4  C22⋊Q8⋊D5  (C2×C10)⋊Q16  C5⋊(C8.D4)  Dic5⋊D8  (C2×D8).D5  Dic53SD16  Dic55SD16  (C5×D4).D4  (C5×Q8).D4  Dic53Q16  (C2×Q16)⋊D5  M4(2).D10  M4(2).13D10  M4(2).15D10  M4(2).16D10  C24.18D10  C24.20D10  C24.21D10  Dic5⋊D12  Dic152D4  Dic154D4  (S3×C10)⋊D4  (C2×C10)⋊4D12  Dic1518D4  Dic1512D4

34 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F5A5B10A···10F10G···10N20A20B20C20D
order122222224444445510···1010···1020202020
size11112242041010101020222···24···44444

34 irreducible representations

dim1111111222222244
type+++++++++++++-
imageC1C2C2C2C2C2C2D4D4D5C4○D4D10D10C5⋊D4D4×D5D42D5
kernelDic5⋊D4C10.D4D10⋊C4C23.D5C22×Dic5C2×C5⋊D4D4×C10Dic5C2×C10C2×D4C10C2×C4C23C22C2C2
# reps1111121222224822

Matrix representation of Dic5⋊D4 in GL4(𝔽41) generated by

04000
1700
0010
0001
,
174000
32400
0010
0001
,
174000
12400
00040
0010
,
40000
04000
0001
0010
G:=sub<GL(4,GF(41))| [0,1,0,0,40,7,0,0,0,0,1,0,0,0,0,1],[17,3,0,0,40,24,0,0,0,0,1,0,0,0,0,1],[17,1,0,0,40,24,0,0,0,0,0,1,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,0,1,0,0,1,0] >;

Dic5⋊D4 in GAP, Magma, Sage, TeX

{\rm Dic}_5\rtimes D_4
% in TeX

G:=Group("Dic5:D4");
// GroupNames label

G:=SmallGroup(160,160);
// by ID

G=gap.SmallGroup(160,160);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,217,218,188,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^4=d^2=1,b^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽