metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.1152+ 1+4, C4⋊D4⋊21D5, C20⋊2D4⋊26C2, C4⋊C4.184D10, (D4×Dic5)⋊25C2, (C2×D4).157D10, (C2×C20).44C23, C22⋊C4.10D10, C4.Dic10⋊20C2, Dic5⋊D4⋊16C2, C20.205(C4○D4), C4.98(D4⋊2D5), (C2×C10).162C24, (C22×C4).229D10, C2.30(D4⋊8D10), C23.22(C22×D5), (D4×C10).127C22, C23.D10⋊20C2, C22.D20⋊12C2, C22.2(D4⋊2D5), C4⋊Dic5.209C22, (C22×D5).69C23, C22.183(C23×D5), C23.D5.28C22, (C22×C20).245C22, (C22×C10).190C23, C5⋊8(C22.47C24), (C4×Dic5).106C22, (C2×Dic5).240C23, C10.D4.20C22, D10⋊C4.106C22, (C22×Dic5).114C22, (C4×C5⋊D4)⋊21C2, C4⋊C4⋊7D5⋊22C2, (C5×C4⋊D4)⋊24C2, (C2×C4⋊Dic5)⋊41C2, C10.86(C2×C4○D4), (C2×C4×D5).97C22, C2.41(C2×D4⋊2D5), (C2×C10).24(C4○D4), (C5×C4⋊C4).149C22, (C2×C4).589(C22×D5), (C2×C5⋊D4).127C22, (C5×C22⋊C4).18C22, SmallGroup(320,1290)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C5⋊D4 — C4×C5⋊D4 — C10.1152+ 1+4 |
Generators and relations for C10.1152+ 1+4
G = < a,b,c,d,e | a10=b4=1, c2=e2=a5, d2=b2, ab=ba, cac-1=dad-1=eae-1=a-1, cbc-1=b-1, dbd-1=a5b, be=eb, cd=dc, ce=ec, ede-1=a5b2d >
Subgroups: 790 in 238 conjugacy classes, 99 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4⋊D4, C4⋊D4, C22.D4, C42.C2, C42⋊2C2, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, C22.47C24, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, C23.D10, C22.D20, C4.Dic10, C4⋊C4⋊7D5, C2×C4⋊Dic5, C4×C5⋊D4, D4×Dic5, D4×Dic5, C20⋊2D4, Dic5⋊D4, C5×C4⋊D4, C10.1152+ 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.47C24, D4⋊2D5, C23×D5, C2×D4⋊2D5, D4⋊8D10, C10.1152+ 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 50 23 33)(2 41 24 34)(3 42 25 35)(4 43 26 36)(5 44 27 37)(6 45 28 38)(7 46 29 39)(8 47 30 40)(9 48 21 31)(10 49 22 32)(11 138 158 145)(12 139 159 146)(13 140 160 147)(14 131 151 148)(15 132 152 149)(16 133 153 150)(17 134 154 141)(18 135 155 142)(19 136 156 143)(20 137 157 144)(51 88 68 71)(52 89 69 72)(53 90 70 73)(54 81 61 74)(55 82 62 75)(56 83 63 76)(57 84 64 77)(58 85 65 78)(59 86 66 79)(60 87 67 80)(91 123 108 116)(92 124 109 117)(93 125 110 118)(94 126 101 119)(95 127 102 120)(96 128 103 111)(97 129 104 112)(98 130 105 113)(99 121 106 114)(100 122 107 115)
(1 133 6 138)(2 132 7 137)(3 131 8 136)(4 140 9 135)(5 139 10 134)(11 50 16 45)(12 49 17 44)(13 48 18 43)(14 47 19 42)(15 46 20 41)(21 142 26 147)(22 141 27 146)(23 150 28 145)(24 149 29 144)(25 148 30 143)(31 155 36 160)(32 154 37 159)(33 153 38 158)(34 152 39 157)(35 151 40 156)(51 95 56 100)(52 94 57 99)(53 93 58 98)(54 92 59 97)(55 91 60 96)(61 109 66 104)(62 108 67 103)(63 107 68 102)(64 106 69 101)(65 105 70 110)(71 127 76 122)(72 126 77 121)(73 125 78 130)(74 124 79 129)(75 123 80 128)(81 117 86 112)(82 116 87 111)(83 115 88 120)(84 114 89 119)(85 113 90 118)
(1 105 23 98)(2 104 24 97)(3 103 25 96)(4 102 26 95)(5 101 27 94)(6 110 28 93)(7 109 29 92)(8 108 30 91)(9 107 21 100)(10 106 22 99)(11 90 158 73)(12 89 159 72)(13 88 160 71)(14 87 151 80)(15 86 152 79)(16 85 153 78)(17 84 154 77)(18 83 155 76)(19 82 156 75)(20 81 157 74)(31 127 48 120)(32 126 49 119)(33 125 50 118)(34 124 41 117)(35 123 42 116)(36 122 43 115)(37 121 44 114)(38 130 45 113)(39 129 46 112)(40 128 47 111)(51 135 68 142)(52 134 69 141)(53 133 70 150)(54 132 61 149)(55 131 62 148)(56 140 63 147)(57 139 64 146)(58 138 65 145)(59 137 66 144)(60 136 67 143)
(1 73 6 78)(2 72 7 77)(3 71 8 76)(4 80 9 75)(5 79 10 74)(11 98 16 93)(12 97 17 92)(13 96 18 91)(14 95 19 100)(15 94 20 99)(21 82 26 87)(22 81 27 86)(23 90 28 85)(24 89 29 84)(25 88 30 83)(31 62 36 67)(32 61 37 66)(33 70 38 65)(34 69 39 64)(35 68 40 63)(41 52 46 57)(42 51 47 56)(43 60 48 55)(44 59 49 54)(45 58 50 53)(101 157 106 152)(102 156 107 151)(103 155 108 160)(104 154 109 159)(105 153 110 158)(111 142 116 147)(112 141 117 146)(113 150 118 145)(114 149 119 144)(115 148 120 143)(121 132 126 137)(122 131 127 136)(123 140 128 135)(124 139 129 134)(125 138 130 133)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,50,23,33)(2,41,24,34)(3,42,25,35)(4,43,26,36)(5,44,27,37)(6,45,28,38)(7,46,29,39)(8,47,30,40)(9,48,21,31)(10,49,22,32)(11,138,158,145)(12,139,159,146)(13,140,160,147)(14,131,151,148)(15,132,152,149)(16,133,153,150)(17,134,154,141)(18,135,155,142)(19,136,156,143)(20,137,157,144)(51,88,68,71)(52,89,69,72)(53,90,70,73)(54,81,61,74)(55,82,62,75)(56,83,63,76)(57,84,64,77)(58,85,65,78)(59,86,66,79)(60,87,67,80)(91,123,108,116)(92,124,109,117)(93,125,110,118)(94,126,101,119)(95,127,102,120)(96,128,103,111)(97,129,104,112)(98,130,105,113)(99,121,106,114)(100,122,107,115), (1,133,6,138)(2,132,7,137)(3,131,8,136)(4,140,9,135)(5,139,10,134)(11,50,16,45)(12,49,17,44)(13,48,18,43)(14,47,19,42)(15,46,20,41)(21,142,26,147)(22,141,27,146)(23,150,28,145)(24,149,29,144)(25,148,30,143)(31,155,36,160)(32,154,37,159)(33,153,38,158)(34,152,39,157)(35,151,40,156)(51,95,56,100)(52,94,57,99)(53,93,58,98)(54,92,59,97)(55,91,60,96)(61,109,66,104)(62,108,67,103)(63,107,68,102)(64,106,69,101)(65,105,70,110)(71,127,76,122)(72,126,77,121)(73,125,78,130)(74,124,79,129)(75,123,80,128)(81,117,86,112)(82,116,87,111)(83,115,88,120)(84,114,89,119)(85,113,90,118), (1,105,23,98)(2,104,24,97)(3,103,25,96)(4,102,26,95)(5,101,27,94)(6,110,28,93)(7,109,29,92)(8,108,30,91)(9,107,21,100)(10,106,22,99)(11,90,158,73)(12,89,159,72)(13,88,160,71)(14,87,151,80)(15,86,152,79)(16,85,153,78)(17,84,154,77)(18,83,155,76)(19,82,156,75)(20,81,157,74)(31,127,48,120)(32,126,49,119)(33,125,50,118)(34,124,41,117)(35,123,42,116)(36,122,43,115)(37,121,44,114)(38,130,45,113)(39,129,46,112)(40,128,47,111)(51,135,68,142)(52,134,69,141)(53,133,70,150)(54,132,61,149)(55,131,62,148)(56,140,63,147)(57,139,64,146)(58,138,65,145)(59,137,66,144)(60,136,67,143), (1,73,6,78)(2,72,7,77)(3,71,8,76)(4,80,9,75)(5,79,10,74)(11,98,16,93)(12,97,17,92)(13,96,18,91)(14,95,19,100)(15,94,20,99)(21,82,26,87)(22,81,27,86)(23,90,28,85)(24,89,29,84)(25,88,30,83)(31,62,36,67)(32,61,37,66)(33,70,38,65)(34,69,39,64)(35,68,40,63)(41,52,46,57)(42,51,47,56)(43,60,48,55)(44,59,49,54)(45,58,50,53)(101,157,106,152)(102,156,107,151)(103,155,108,160)(104,154,109,159)(105,153,110,158)(111,142,116,147)(112,141,117,146)(113,150,118,145)(114,149,119,144)(115,148,120,143)(121,132,126,137)(122,131,127,136)(123,140,128,135)(124,139,129,134)(125,138,130,133)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,50,23,33)(2,41,24,34)(3,42,25,35)(4,43,26,36)(5,44,27,37)(6,45,28,38)(7,46,29,39)(8,47,30,40)(9,48,21,31)(10,49,22,32)(11,138,158,145)(12,139,159,146)(13,140,160,147)(14,131,151,148)(15,132,152,149)(16,133,153,150)(17,134,154,141)(18,135,155,142)(19,136,156,143)(20,137,157,144)(51,88,68,71)(52,89,69,72)(53,90,70,73)(54,81,61,74)(55,82,62,75)(56,83,63,76)(57,84,64,77)(58,85,65,78)(59,86,66,79)(60,87,67,80)(91,123,108,116)(92,124,109,117)(93,125,110,118)(94,126,101,119)(95,127,102,120)(96,128,103,111)(97,129,104,112)(98,130,105,113)(99,121,106,114)(100,122,107,115), (1,133,6,138)(2,132,7,137)(3,131,8,136)(4,140,9,135)(5,139,10,134)(11,50,16,45)(12,49,17,44)(13,48,18,43)(14,47,19,42)(15,46,20,41)(21,142,26,147)(22,141,27,146)(23,150,28,145)(24,149,29,144)(25,148,30,143)(31,155,36,160)(32,154,37,159)(33,153,38,158)(34,152,39,157)(35,151,40,156)(51,95,56,100)(52,94,57,99)(53,93,58,98)(54,92,59,97)(55,91,60,96)(61,109,66,104)(62,108,67,103)(63,107,68,102)(64,106,69,101)(65,105,70,110)(71,127,76,122)(72,126,77,121)(73,125,78,130)(74,124,79,129)(75,123,80,128)(81,117,86,112)(82,116,87,111)(83,115,88,120)(84,114,89,119)(85,113,90,118), (1,105,23,98)(2,104,24,97)(3,103,25,96)(4,102,26,95)(5,101,27,94)(6,110,28,93)(7,109,29,92)(8,108,30,91)(9,107,21,100)(10,106,22,99)(11,90,158,73)(12,89,159,72)(13,88,160,71)(14,87,151,80)(15,86,152,79)(16,85,153,78)(17,84,154,77)(18,83,155,76)(19,82,156,75)(20,81,157,74)(31,127,48,120)(32,126,49,119)(33,125,50,118)(34,124,41,117)(35,123,42,116)(36,122,43,115)(37,121,44,114)(38,130,45,113)(39,129,46,112)(40,128,47,111)(51,135,68,142)(52,134,69,141)(53,133,70,150)(54,132,61,149)(55,131,62,148)(56,140,63,147)(57,139,64,146)(58,138,65,145)(59,137,66,144)(60,136,67,143), (1,73,6,78)(2,72,7,77)(3,71,8,76)(4,80,9,75)(5,79,10,74)(11,98,16,93)(12,97,17,92)(13,96,18,91)(14,95,19,100)(15,94,20,99)(21,82,26,87)(22,81,27,86)(23,90,28,85)(24,89,29,84)(25,88,30,83)(31,62,36,67)(32,61,37,66)(33,70,38,65)(34,69,39,64)(35,68,40,63)(41,52,46,57)(42,51,47,56)(43,60,48,55)(44,59,49,54)(45,58,50,53)(101,157,106,152)(102,156,107,151)(103,155,108,160)(104,154,109,159)(105,153,110,158)(111,142,116,147)(112,141,117,146)(113,150,118,145)(114,149,119,144)(115,148,120,143)(121,132,126,137)(122,131,127,136)(123,140,128,135)(124,139,129,134)(125,138,130,133) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,50,23,33),(2,41,24,34),(3,42,25,35),(4,43,26,36),(5,44,27,37),(6,45,28,38),(7,46,29,39),(8,47,30,40),(9,48,21,31),(10,49,22,32),(11,138,158,145),(12,139,159,146),(13,140,160,147),(14,131,151,148),(15,132,152,149),(16,133,153,150),(17,134,154,141),(18,135,155,142),(19,136,156,143),(20,137,157,144),(51,88,68,71),(52,89,69,72),(53,90,70,73),(54,81,61,74),(55,82,62,75),(56,83,63,76),(57,84,64,77),(58,85,65,78),(59,86,66,79),(60,87,67,80),(91,123,108,116),(92,124,109,117),(93,125,110,118),(94,126,101,119),(95,127,102,120),(96,128,103,111),(97,129,104,112),(98,130,105,113),(99,121,106,114),(100,122,107,115)], [(1,133,6,138),(2,132,7,137),(3,131,8,136),(4,140,9,135),(5,139,10,134),(11,50,16,45),(12,49,17,44),(13,48,18,43),(14,47,19,42),(15,46,20,41),(21,142,26,147),(22,141,27,146),(23,150,28,145),(24,149,29,144),(25,148,30,143),(31,155,36,160),(32,154,37,159),(33,153,38,158),(34,152,39,157),(35,151,40,156),(51,95,56,100),(52,94,57,99),(53,93,58,98),(54,92,59,97),(55,91,60,96),(61,109,66,104),(62,108,67,103),(63,107,68,102),(64,106,69,101),(65,105,70,110),(71,127,76,122),(72,126,77,121),(73,125,78,130),(74,124,79,129),(75,123,80,128),(81,117,86,112),(82,116,87,111),(83,115,88,120),(84,114,89,119),(85,113,90,118)], [(1,105,23,98),(2,104,24,97),(3,103,25,96),(4,102,26,95),(5,101,27,94),(6,110,28,93),(7,109,29,92),(8,108,30,91),(9,107,21,100),(10,106,22,99),(11,90,158,73),(12,89,159,72),(13,88,160,71),(14,87,151,80),(15,86,152,79),(16,85,153,78),(17,84,154,77),(18,83,155,76),(19,82,156,75),(20,81,157,74),(31,127,48,120),(32,126,49,119),(33,125,50,118),(34,124,41,117),(35,123,42,116),(36,122,43,115),(37,121,44,114),(38,130,45,113),(39,129,46,112),(40,128,47,111),(51,135,68,142),(52,134,69,141),(53,133,70,150),(54,132,61,149),(55,131,62,148),(56,140,63,147),(57,139,64,146),(58,138,65,145),(59,137,66,144),(60,136,67,143)], [(1,73,6,78),(2,72,7,77),(3,71,8,76),(4,80,9,75),(5,79,10,74),(11,98,16,93),(12,97,17,92),(13,96,18,91),(14,95,19,100),(15,94,20,99),(21,82,26,87),(22,81,27,86),(23,90,28,85),(24,89,29,84),(25,88,30,83),(31,62,36,67),(32,61,37,66),(33,70,38,65),(34,69,39,64),(35,68,40,63),(41,52,46,57),(42,51,47,56),(43,60,48,55),(44,59,49,54),(45,58,50,53),(101,157,106,152),(102,156,107,151),(103,155,108,160),(104,154,109,159),(105,153,110,158),(111,142,116,147),(112,141,117,146),(113,150,118,145),(114,149,119,144),(115,148,120,143),(121,132,126,137),(122,131,127,136),(123,140,128,135),(124,139,129,134),(125,138,130,133)]])
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | ··· | 4M | 4N | 4O | 4P | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 20A | ··· | 20H | 20I | 20J | 20K | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 20 | 2 | 2 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | 2+ 1+4 | D4⋊2D5 | D4⋊2D5 | D4⋊8D10 |
kernel | C10.1152+ 1+4 | C23.D10 | C22.D20 | C4.Dic10 | C4⋊C4⋊7D5 | C2×C4⋊Dic5 | C4×C5⋊D4 | D4×Dic5 | C20⋊2D4 | Dic5⋊D4 | C5×C4⋊D4 | C4⋊D4 | C20 | C2×C10 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | C4 | C22 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 2 | 4 | 4 | 4 | 2 | 2 | 6 | 1 | 4 | 4 | 4 |
Matrix representation of C10.1152+ 1+4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 7 | 0 | 0 |
0 | 0 | 35 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
32 | 0 | 0 | 0 | 0 | 0 |
32 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 32 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 39 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 7 | 0 | 0 |
0 | 0 | 36 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
40 | 2 | 0 | 0 | 0 | 0 |
40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 7 | 0 | 0 |
0 | 0 | 36 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 18 | 40 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 7 | 0 | 0 |
0 | 0 | 36 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 40 |
0 | 0 | 0 | 0 | 0 | 32 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,6,35,0,0,0,0,7,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[32,32,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,32,1],[1,1,0,0,0,0,39,40,0,0,0,0,0,0,6,36,0,0,0,0,7,35,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,6,36,0,0,0,0,7,35,0,0,0,0,0,0,1,18,0,0,0,0,0,40],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,6,36,0,0,0,0,7,35,0,0,0,0,0,0,9,0,0,0,0,0,40,32] >;
C10.1152+ 1+4 in GAP, Magma, Sage, TeX
C_{10}._{115}2_+^{1+4}
% in TeX
G:=Group("C10.115ES+(2,2)");
// GroupNames label
G:=SmallGroup(320,1290);
// by ID
G=gap.SmallGroup(320,1290);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,675,570,185,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=e^2=a^5,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=e*a*e^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^5*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations