Extensions 1→N→G→Q→1 with N=M4(2) and Q=F5

Direct product G=N×Q with N=M4(2) and Q=F5

Semidirect products G=N:Q with N=M4(2) and Q=F5
extensionφ:Q→Out NdρLabelID
M4(2)⋊1F5 = M4(2)⋊1F5φ: F5/D5C2 ⊆ Out M4(2)408M4(2):1F5320,1065
M4(2)⋊2F5 = M4(2)⋊F5φ: F5/D5C2 ⊆ Out M4(2)408M4(2):2F5320,237
M4(2)⋊3F5 = M4(2)⋊3F5φ: F5/D5C2 ⊆ Out M4(2)408M4(2):3F5320,238
M4(2)⋊4F5 = M4(2)⋊4F5φ: F5/D5C2 ⊆ Out M4(2)808M4(2):4F5320,240
M4(2)⋊5F5 = M4(2)⋊5F5φ: trivial image808M4(2):5F5320,1066

Non-split extensions G=N.Q with N=M4(2) and Q=F5
extensionφ:Q→Out NdρLabelID
M4(2).1F5 = M4(2).1F5φ: F5/D5C2 ⊆ Out M4(2)808M4(2).1F5320,1067
M4(2).2F5 = D20.C8φ: F5/D5C2 ⊆ Out M4(2)1608M4(2).2F5320,236
M4(2).3F5 = M4(2).F5φ: F5/D5C2 ⊆ Out M4(2)808M4(2).3F5320,239
M4(2).4F5 = Dic10.C8φ: trivial image1608M4(2).4F5320,1063