metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: M4(2)⋊3F5, C20.3C42, C4⋊F5⋊2C4, (C4×F5)⋊4C4, C4.8(C4×F5), D5.2C4≀C2, C4.Dic5⋊2C4, C5⋊3(C42⋊6C4), (C4×D5).117D4, (C5×M4(2))⋊3C4, Dic5.6(C4⋊C4), (C2×Dic5).11Q8, (C22×D5).58D4, (D5×M4(2)).4C2, C22.10(C4⋊F5), C4.40(C22⋊F5), C20.38(C22⋊C4), D10.6(C22⋊C4), C2.15(D10.3Q8), C10.14(C2.C42), D10.C23.1C2, (C2×C4×F5).2C2, (C2×C4).69(C2×F5), (C2×C10).3(C4⋊C4), (C2×C20).36(C2×C4), (C4×D5).14(C2×C4), (C2×C4×D5).187C22, SmallGroup(320,238)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for M4(2)⋊3F5
G = < a,b,c,d | a8=b2=c5=d4=1, bab=a5, ac=ca, dad-1=a-1b, bc=cb, dbd-1=a4b, dcd-1=c3 >
Subgroups: 466 in 110 conjugacy classes, 36 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C2×C42, C42⋊C2, C2×M4(2), C5⋊2C8, C40, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C42⋊6C4, C8×D5, C8⋊D5, C4.Dic5, C5×M4(2), C4×F5, C4×F5, C4⋊F5, C22⋊F5, C2×C4×D5, C22×F5, D5×M4(2), C2×C4×F5, D10.C23, M4(2)⋊3F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, F5, C2.C42, C4≀C2, C2×F5, C42⋊6C4, C4×F5, C4⋊F5, C22⋊F5, D10.3Q8, M4(2)⋊3F5
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(1 5)(3 7)(10 14)(12 16)(18 22)(20 24)(26 30)(28 32)(33 37)(35 39)
(1 26 22 16 35)(2 27 23 9 36)(3 28 24 10 37)(4 29 17 11 38)(5 30 18 12 39)(6 31 19 13 40)(7 32 20 14 33)(8 25 21 15 34)
(1 8)(2 3)(4 5)(6 7)(9 28 23 37)(10 27 24 36)(11 30 17 39)(12 29 18 38)(13 32 19 33)(14 31 20 40)(15 26 21 35)(16 25 22 34)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,5)(3,7)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39), (1,26,22,16,35)(2,27,23,9,36)(3,28,24,10,37)(4,29,17,11,38)(5,30,18,12,39)(6,31,19,13,40)(7,32,20,14,33)(8,25,21,15,34), (1,8)(2,3)(4,5)(6,7)(9,28,23,37)(10,27,24,36)(11,30,17,39)(12,29,18,38)(13,32,19,33)(14,31,20,40)(15,26,21,35)(16,25,22,34)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,5)(3,7)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39), (1,26,22,16,35)(2,27,23,9,36)(3,28,24,10,37)(4,29,17,11,38)(5,30,18,12,39)(6,31,19,13,40)(7,32,20,14,33)(8,25,21,15,34), (1,8)(2,3)(4,5)(6,7)(9,28,23,37)(10,27,24,36)(11,30,17,39)(12,29,18,38)(13,32,19,33)(14,31,20,40)(15,26,21,35)(16,25,22,34) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(1,5),(3,7),(10,14),(12,16),(18,22),(20,24),(26,30),(28,32),(33,37),(35,39)], [(1,26,22,16,35),(2,27,23,9,36),(3,28,24,10,37),(4,29,17,11,38),(5,30,18,12,39),(6,31,19,13,40),(7,32,20,14,33),(8,25,21,15,34)], [(1,8),(2,3),(4,5),(6,7),(9,28,23,37),(10,27,24,36),(11,30,17,39),(12,29,18,38),(13,32,19,33),(14,31,20,40),(15,26,21,35),(16,25,22,34)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | ··· | 4N | 4O | 4P | 4Q | 4R | 5 | 8A | 8B | 8C | 8D | 10A | 10B | 20A | 20B | 20C | 40A | 40B | 40C | 40D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 20 | 20 | 20 | 40 | 40 | 40 | 40 |
size | 1 | 1 | 2 | 5 | 5 | 10 | 1 | 1 | 2 | 5 | 5 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 20 | 20 | 4 | 8 | 4 | 4 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | - | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | Q8 | D4 | C4≀C2 | F5 | C2×F5 | C4×F5 | C22⋊F5 | C4⋊F5 | M4(2)⋊3F5 |
kernel | M4(2)⋊3F5 | D5×M4(2) | C2×C4×F5 | D10.C23 | C4.Dic5 | C5×M4(2) | C4×F5 | C4⋊F5 | C4×D5 | C2×Dic5 | C22×D5 | D5 | M4(2) | C2×C4 | C4 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 1 | 1 | 8 | 1 | 1 | 2 | 2 | 2 | 2 |
Matrix representation of M4(2)⋊3F5 ►in GL6(𝔽41)
28 | 37 | 0 | 0 | 0 | 0 |
40 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 27 | 0 | 14 |
0 | 0 | 0 | 34 | 27 | 14 |
0 | 0 | 14 | 27 | 34 | 0 |
0 | 0 | 14 | 0 | 27 | 7 |
1 | 0 | 0 | 0 | 0 | 0 |
14 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
13 | 4 | 0 | 0 | 0 | 0 |
19 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 0 | 7 | 14 |
0 | 0 | 0 | 14 | 34 | 7 |
0 | 0 | 27 | 7 | 34 | 14 |
0 | 0 | 27 | 14 | 7 | 0 |
G:=sub<GL(6,GF(41))| [28,40,0,0,0,0,37,13,0,0,0,0,0,0,7,0,14,14,0,0,27,34,27,0,0,0,0,27,34,27,0,0,14,14,0,7],[1,14,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[13,19,0,0,0,0,4,28,0,0,0,0,0,0,34,0,27,27,0,0,0,14,7,14,0,0,7,34,34,7,0,0,14,7,14,0] >;
M4(2)⋊3F5 in GAP, Magma, Sage, TeX
M_4(2)\rtimes_3F_5
% in TeX
G:=Group("M4(2):3F5");
// GroupNames label
G:=SmallGroup(320,238);
// by ID
G=gap.SmallGroup(320,238);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,136,1684,851,102,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^5=d^4=1,b*a*b=a^5,a*c=c*a,d*a*d^-1=a^-1*b,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^3>;
// generators/relations