metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.4C42, M4(2).3F5, C4.9(C4×F5), D5⋊C8.4C4, C4.F5.1C4, D10.7(C4⋊C4), (C4×D5).118D4, D5.(C8.C4), C4.Dic5.1C4, (C22×D5).8Q8, C5⋊2(C4.C42), D5⋊M4(2).2C2, (D5×M4(2)).5C2, (C5×M4(2)).3C4, C22.11(C4⋊F5), C4.41(C22⋊F5), C20.39(C22⋊C4), (C2×Dic5).100D4, Dic5.33(C22⋊C4), C2.16(D10.3Q8), C10.15(C2.C42), (C2×D5⋊C8).2C2, (C2×C4).70(C2×F5), (C2×C10).4(C4⋊C4), (C2×C20).37(C2×C4), (C4×D5).15(C2×C4), (C2×C4×D5).188C22, SmallGroup(320,239)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for M4(2).F5
G = < a,b,c,d | a8=b2=c5=1, d4=a4, bab=a5, ac=ca, dad-1=a-1b, bc=cb, dbd-1=a4b, dcd-1=c3 >
Subgroups: 322 in 90 conjugacy classes, 36 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C2×C8, M4(2), M4(2), C22×C4, Dic5, C20, D10, D10, C2×C10, C22×C8, C2×M4(2), C5⋊2C8, C40, C5⋊C8, C4×D5, C2×Dic5, C2×C20, C22×D5, C4.C42, C8×D5, C8⋊D5, C4.Dic5, C5×M4(2), D5⋊C8, D5⋊C8, C4.F5, C2×C5⋊C8, C22.F5, C2×C4×D5, D5×M4(2), C2×D5⋊C8, D5⋊M4(2), M4(2).F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, F5, C2.C42, C8.C4, C2×F5, C4.C42, C4×F5, C4⋊F5, C22⋊F5, D10.3Q8, M4(2).F5
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(26 30)(28 32)(33 37)(35 39)(41 45)(43 47)(50 54)(52 56)(58 62)(60 64)(66 70)(68 72)(74 78)(76 80)
(1 65 59 51 44)(2 66 60 52 45)(3 67 61 53 46)(4 68 62 54 47)(5 69 63 55 48)(6 70 64 56 41)(7 71 57 49 42)(8 72 58 50 43)(9 30 23 80 33)(10 31 24 73 34)(11 32 17 74 35)(12 25 18 75 36)(13 26 19 76 37)(14 27 20 77 38)(15 28 21 78 39)(16 29 22 79 40)
(1 21 3 23 5 17 7 19)(2 20 4 22 6 24 8 18)(9 69 35 42 13 65 39 46)(10 72 36 45 14 68 40 41)(11 71 37 44 15 67 33 48)(12 66 38 47 16 70 34 43)(25 52 77 62 29 56 73 58)(26 51 78 61 30 55 74 57)(27 54 79 64 31 50 75 60)(28 53 80 63 32 49 76 59)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80), (1,65,59,51,44)(2,66,60,52,45)(3,67,61,53,46)(4,68,62,54,47)(5,69,63,55,48)(6,70,64,56,41)(7,71,57,49,42)(8,72,58,50,43)(9,30,23,80,33)(10,31,24,73,34)(11,32,17,74,35)(12,25,18,75,36)(13,26,19,76,37)(14,27,20,77,38)(15,28,21,78,39)(16,29,22,79,40), (1,21,3,23,5,17,7,19)(2,20,4,22,6,24,8,18)(9,69,35,42,13,65,39,46)(10,72,36,45,14,68,40,41)(11,71,37,44,15,67,33,48)(12,66,38,47,16,70,34,43)(25,52,77,62,29,56,73,58)(26,51,78,61,30,55,74,57)(27,54,79,64,31,50,75,60)(28,53,80,63,32,49,76,59)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80), (1,65,59,51,44)(2,66,60,52,45)(3,67,61,53,46)(4,68,62,54,47)(5,69,63,55,48)(6,70,64,56,41)(7,71,57,49,42)(8,72,58,50,43)(9,30,23,80,33)(10,31,24,73,34)(11,32,17,74,35)(12,25,18,75,36)(13,26,19,76,37)(14,27,20,77,38)(15,28,21,78,39)(16,29,22,79,40), (1,21,3,23,5,17,7,19)(2,20,4,22,6,24,8,18)(9,69,35,42,13,65,39,46)(10,72,36,45,14,68,40,41)(11,71,37,44,15,67,33,48)(12,66,38,47,16,70,34,43)(25,52,77,62,29,56,73,58)(26,51,78,61,30,55,74,57)(27,54,79,64,31,50,75,60)(28,53,80,63,32,49,76,59) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(26,30),(28,32),(33,37),(35,39),(41,45),(43,47),(50,54),(52,56),(58,62),(60,64),(66,70),(68,72),(74,78),(76,80)], [(1,65,59,51,44),(2,66,60,52,45),(3,67,61,53,46),(4,68,62,54,47),(5,69,63,55,48),(6,70,64,56,41),(7,71,57,49,42),(8,72,58,50,43),(9,30,23,80,33),(10,31,24,73,34),(11,32,17,74,35),(12,25,18,75,36),(13,26,19,76,37),(14,27,20,77,38),(15,28,21,78,39),(16,29,22,79,40)], [(1,21,3,23,5,17,7,19),(2,20,4,22,6,24,8,18),(9,69,35,42,13,65,39,46),(10,72,36,45,14,68,40,41),(11,71,37,44,15,67,33,48),(12,66,38,47,16,70,34,43),(25,52,77,62,29,56,73,58),(26,51,78,61,30,55,74,57),(27,54,79,64,31,50,75,60),(28,53,80,63,32,49,76,59)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 8A | 8B | 8C | ··· | 8J | 8K | ··· | 8P | 10A | 10B | 20A | 20B | 20C | 40A | 40B | 40C | 40D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | 8 | 8 | ··· | 8 | 8 | ··· | 8 | 10 | 10 | 20 | 20 | 20 | 40 | 40 | 40 | 40 |
size | 1 | 1 | 2 | 5 | 5 | 10 | 1 | 1 | 2 | 5 | 5 | 10 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | ··· | 20 | 4 | 8 | 4 | 4 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | - | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D4 | Q8 | C8.C4 | F5 | C2×F5 | C4×F5 | C22⋊F5 | C4⋊F5 | M4(2).F5 |
kernel | M4(2).F5 | D5×M4(2) | C2×D5⋊C8 | D5⋊M4(2) | C4.Dic5 | C5×M4(2) | D5⋊C8 | C4.F5 | C4×D5 | C2×Dic5 | C22×D5 | D5 | M4(2) | C2×C4 | C4 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 1 | 1 | 8 | 1 | 1 | 2 | 2 | 2 | 2 |
Matrix representation of M4(2).F5 ►in GL6(𝔽41)
28 | 4 | 0 | 0 | 0 | 0 |
17 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 14 | 0 | 27 |
0 | 0 | 0 | 7 | 14 | 27 |
0 | 0 | 27 | 14 | 7 | 0 |
0 | 0 | 27 | 0 | 14 | 34 |
40 | 0 | 0 | 0 | 0 | 0 |
14 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
39 | 29 | 0 | 0 | 0 | 0 |
3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 0 | 4 | 10 |
0 | 0 | 0 | 10 | 35 | 6 |
0 | 0 | 31 | 6 | 35 | 10 |
0 | 0 | 31 | 10 | 4 | 0 |
G:=sub<GL(6,GF(41))| [28,17,0,0,0,0,4,13,0,0,0,0,0,0,34,0,27,27,0,0,14,7,14,0,0,0,0,14,7,14,0,0,27,27,0,34],[40,14,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[39,3,0,0,0,0,29,2,0,0,0,0,0,0,37,0,31,31,0,0,0,10,6,10,0,0,4,35,35,4,0,0,10,6,10,0] >;
M4(2).F5 in GAP, Magma, Sage, TeX
M_4(2).F_5
% in TeX
G:=Group("M4(2).F5");
// GroupNames label
G:=SmallGroup(320,239);
// by ID
G=gap.SmallGroup(320,239);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,184,136,1684,851,102,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^5=1,d^4=a^4,b*a*b=a^5,a*c=c*a,d*a*d^-1=a^-1*b,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^3>;
// generators/relations