Extensions 1→N→G→Q→1 with N=C2 and Q=C4.D20

Direct product G=N×Q with N=C2 and Q=C4.D20
dρLabelID
C2×C4.D20160C2xC4.D20320,1148


Non-split extensions G=N.Q with N=C2 and Q=C4.D20
extensionφ:Q→Aut NdρLabelID
C2.1(C4.D20) = (C2×C20)⋊10Q8central extension (φ=1)320C2.1(C4.D20)320,556
C2.2(C4.D20) = C429Dic5central extension (φ=1)320C2.2(C4.D20)320,563
C2.3(C4.D20) = (C2×C4)⋊6D20central extension (φ=1)160C2.3(C4.D20)320,566
C2.4(C4.D20) = (C2×C42)⋊D5central extension (φ=1)160C2.4(C4.D20)320,567
C2.5(C4.D20) = (C2×C20).28D4central stem extension (φ=1)320C2.5(C4.D20)320,286
C2.6(C4.D20) = (C2×Dic5)⋊3D4central stem extension (φ=1)160C2.6(C4.D20)320,299
C2.7(C4.D20) = (C2×C4).20D20central stem extension (φ=1)160C2.7(C4.D20)320,300
C2.8(C4.D20) = (C2×C4).21D20central stem extension (φ=1)160C2.8(C4.D20)320,301
C2.9(C4.D20) = C20.14Q16central stem extension (φ=1)320C2.9(C4.D20)320,308
C2.10(C4.D20) = C4.5D40central stem extension (φ=1)160C2.10(C4.D20)320,321
C2.11(C4.D20) = C42.264D10central stem extension (φ=1)160C2.11(C4.D20)320,324
C2.12(C4.D20) = C42.14D10central stem extension (φ=1)320C2.12(C4.D20)320,330
C2.13(C4.D20) = C42.19D10central stem extension (φ=1)160C2.13(C4.D20)320,340
C2.14(C4.D20) = C42.20D10central stem extension (φ=1)160C2.14(C4.D20)320,341

׿
×
𝔽