Copied to
clipboard

G = (C2×C4).20D20order 320 = 26·5

13rd non-split extension by C2×C4 of D20 acting via D20/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C4).20D20, (C2×C20).31D4, (C22×D5)⋊1Q8, C10.6C22≀C2, C51(C23⋊Q8), C22.42(Q8×D5), (C2×Dic5).20D4, (C22×C4).72D10, C22.157(D4×D5), C22.82(C2×D20), C2.9(C22⋊D20), C2.8(D102Q8), (C22×Dic10)⋊1C2, C2.7(C4.D20), C2.C4212D5, C10.26(C22⋊Q8), (C23×D5).5C22, C10.10C425C2, C2.10(D10⋊Q8), C10.20(C4.4D4), C22.90(C4○D20), (C22×C20).17C22, C23.361(C22×D5), C22.88(D42D5), (C22×C10).298C23, C2.10(Dic5.5D4), (C22×Dic5).20C22, (C2×C10).69(C2×Q8), (C2×C10).206(C2×D4), (C2×D10⋊C4).8C2, (C2×C10).60(C4○D4), (C5×C2.C42)⋊10C2, SmallGroup(320,300)

Series: Derived Chief Lower central Upper central

C1C22×C10 — (C2×C4).20D20
C1C5C10C2×C10C22×C10C23×D5C2×D10⋊C4 — (C2×C4).20D20
C5C22×C10 — (C2×C4).20D20
C1C23C2.C42

Generators and relations for (C2×C4).20D20
 G = < a,b,c,d | a2=b20=c4=1, d2=b10, cbc-1=ab=ba, ac=ca, ad=da, dbd-1=b-1, dcd-1=b10c-1 >

Subgroups: 886 in 202 conjugacy classes, 61 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, D5, C10, C10, C22⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C24, Dic5, C20, D10, C2×C10, C2×C10, C2.C42, C2.C42, C2×C22⋊C4, C22×Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C23⋊Q8, D10⋊C4, C2×Dic10, C22×Dic5, C22×Dic5, C22×C20, C22×C20, C23×D5, C10.10C42, C5×C2.C42, C2×D10⋊C4, C2×D10⋊C4, C22×Dic10, (C2×C4).20D20
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22≀C2, C22⋊Q8, C4.4D4, D20, C22×D5, C23⋊Q8, C2×D20, C4○D20, D4×D5, D42D5, Q8×D5, C4.D20, C22⋊D20, Dic5.5D4, D10⋊Q8, D102Q8, (C2×C4).20D20

Smallest permutation representation of (C2×C4).20D20
On 160 points
Generators in S160
(1 148)(2 149)(3 150)(4 151)(5 152)(6 153)(7 154)(8 155)(9 156)(10 157)(11 158)(12 159)(13 160)(14 141)(15 142)(16 143)(17 144)(18 145)(19 146)(20 147)(21 115)(22 116)(23 117)(24 118)(25 119)(26 120)(27 101)(28 102)(29 103)(30 104)(31 105)(32 106)(33 107)(34 108)(35 109)(36 110)(37 111)(38 112)(39 113)(40 114)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 79)(48 80)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)(57 69)(58 70)(59 71)(60 72)(81 129)(82 130)(83 131)(84 132)(85 133)(86 134)(87 135)(88 136)(89 137)(90 138)(91 139)(92 140)(93 121)(94 122)(95 123)(96 124)(97 125)(98 126)(99 127)(100 128)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 63 24 92)(2 52 25 121)(3 65 26 94)(4 54 27 123)(5 67 28 96)(6 56 29 125)(7 69 30 98)(8 58 31 127)(9 71 32 100)(10 60 33 129)(11 73 34 82)(12 42 35 131)(13 75 36 84)(14 44 37 133)(15 77 38 86)(16 46 39 135)(17 79 40 88)(18 48 21 137)(19 61 22 90)(20 50 23 139)(41 108 130 158)(43 110 132 160)(45 112 134 142)(47 114 136 144)(49 116 138 146)(51 118 140 148)(53 120 122 150)(55 102 124 152)(57 104 126 154)(59 106 128 156)(62 117 91 147)(64 119 93 149)(66 101 95 151)(68 103 97 153)(70 105 99 155)(72 107 81 157)(74 109 83 159)(76 111 85 141)(78 113 87 143)(80 115 89 145)
(1 82 11 92)(2 81 12 91)(3 100 13 90)(4 99 14 89)(5 98 15 88)(6 97 16 87)(7 96 17 86)(8 95 18 85)(9 94 19 84)(10 93 20 83)(21 76 31 66)(22 75 32 65)(23 74 33 64)(24 73 34 63)(25 72 35 62)(26 71 36 61)(27 70 37 80)(28 69 38 79)(29 68 39 78)(30 67 40 77)(41 108 51 118)(42 107 52 117)(43 106 53 116)(44 105 54 115)(45 104 55 114)(46 103 56 113)(47 102 57 112)(48 101 58 111)(49 120 59 110)(50 119 60 109)(121 147 131 157)(122 146 132 156)(123 145 133 155)(124 144 134 154)(125 143 135 153)(126 142 136 152)(127 141 137 151)(128 160 138 150)(129 159 139 149)(130 158 140 148)

G:=sub<Sym(160)| (1,148)(2,149)(3,150)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,157)(11,158)(12,159)(13,160)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,101)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,113)(40,114)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(81,129)(82,130)(83,131)(84,132)(85,133)(86,134)(87,135)(88,136)(89,137)(90,138)(91,139)(92,140)(93,121)(94,122)(95,123)(96,124)(97,125)(98,126)(99,127)(100,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,63,24,92)(2,52,25,121)(3,65,26,94)(4,54,27,123)(5,67,28,96)(6,56,29,125)(7,69,30,98)(8,58,31,127)(9,71,32,100)(10,60,33,129)(11,73,34,82)(12,42,35,131)(13,75,36,84)(14,44,37,133)(15,77,38,86)(16,46,39,135)(17,79,40,88)(18,48,21,137)(19,61,22,90)(20,50,23,139)(41,108,130,158)(43,110,132,160)(45,112,134,142)(47,114,136,144)(49,116,138,146)(51,118,140,148)(53,120,122,150)(55,102,124,152)(57,104,126,154)(59,106,128,156)(62,117,91,147)(64,119,93,149)(66,101,95,151)(68,103,97,153)(70,105,99,155)(72,107,81,157)(74,109,83,159)(76,111,85,141)(78,113,87,143)(80,115,89,145), (1,82,11,92)(2,81,12,91)(3,100,13,90)(4,99,14,89)(5,98,15,88)(6,97,16,87)(7,96,17,86)(8,95,18,85)(9,94,19,84)(10,93,20,83)(21,76,31,66)(22,75,32,65)(23,74,33,64)(24,73,34,63)(25,72,35,62)(26,71,36,61)(27,70,37,80)(28,69,38,79)(29,68,39,78)(30,67,40,77)(41,108,51,118)(42,107,52,117)(43,106,53,116)(44,105,54,115)(45,104,55,114)(46,103,56,113)(47,102,57,112)(48,101,58,111)(49,120,59,110)(50,119,60,109)(121,147,131,157)(122,146,132,156)(123,145,133,155)(124,144,134,154)(125,143,135,153)(126,142,136,152)(127,141,137,151)(128,160,138,150)(129,159,139,149)(130,158,140,148)>;

G:=Group( (1,148)(2,149)(3,150)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,157)(11,158)(12,159)(13,160)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,101)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,113)(40,114)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(81,129)(82,130)(83,131)(84,132)(85,133)(86,134)(87,135)(88,136)(89,137)(90,138)(91,139)(92,140)(93,121)(94,122)(95,123)(96,124)(97,125)(98,126)(99,127)(100,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,63,24,92)(2,52,25,121)(3,65,26,94)(4,54,27,123)(5,67,28,96)(6,56,29,125)(7,69,30,98)(8,58,31,127)(9,71,32,100)(10,60,33,129)(11,73,34,82)(12,42,35,131)(13,75,36,84)(14,44,37,133)(15,77,38,86)(16,46,39,135)(17,79,40,88)(18,48,21,137)(19,61,22,90)(20,50,23,139)(41,108,130,158)(43,110,132,160)(45,112,134,142)(47,114,136,144)(49,116,138,146)(51,118,140,148)(53,120,122,150)(55,102,124,152)(57,104,126,154)(59,106,128,156)(62,117,91,147)(64,119,93,149)(66,101,95,151)(68,103,97,153)(70,105,99,155)(72,107,81,157)(74,109,83,159)(76,111,85,141)(78,113,87,143)(80,115,89,145), (1,82,11,92)(2,81,12,91)(3,100,13,90)(4,99,14,89)(5,98,15,88)(6,97,16,87)(7,96,17,86)(8,95,18,85)(9,94,19,84)(10,93,20,83)(21,76,31,66)(22,75,32,65)(23,74,33,64)(24,73,34,63)(25,72,35,62)(26,71,36,61)(27,70,37,80)(28,69,38,79)(29,68,39,78)(30,67,40,77)(41,108,51,118)(42,107,52,117)(43,106,53,116)(44,105,54,115)(45,104,55,114)(46,103,56,113)(47,102,57,112)(48,101,58,111)(49,120,59,110)(50,119,60,109)(121,147,131,157)(122,146,132,156)(123,145,133,155)(124,144,134,154)(125,143,135,153)(126,142,136,152)(127,141,137,151)(128,160,138,150)(129,159,139,149)(130,158,140,148) );

G=PermutationGroup([[(1,148),(2,149),(3,150),(4,151),(5,152),(6,153),(7,154),(8,155),(9,156),(10,157),(11,158),(12,159),(13,160),(14,141),(15,142),(16,143),(17,144),(18,145),(19,146),(20,147),(21,115),(22,116),(23,117),(24,118),(25,119),(26,120),(27,101),(28,102),(29,103),(30,104),(31,105),(32,106),(33,107),(34,108),(35,109),(36,110),(37,111),(38,112),(39,113),(40,114),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,79),(48,80),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68),(57,69),(58,70),(59,71),(60,72),(81,129),(82,130),(83,131),(84,132),(85,133),(86,134),(87,135),(88,136),(89,137),(90,138),(91,139),(92,140),(93,121),(94,122),(95,123),(96,124),(97,125),(98,126),(99,127),(100,128)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,63,24,92),(2,52,25,121),(3,65,26,94),(4,54,27,123),(5,67,28,96),(6,56,29,125),(7,69,30,98),(8,58,31,127),(9,71,32,100),(10,60,33,129),(11,73,34,82),(12,42,35,131),(13,75,36,84),(14,44,37,133),(15,77,38,86),(16,46,39,135),(17,79,40,88),(18,48,21,137),(19,61,22,90),(20,50,23,139),(41,108,130,158),(43,110,132,160),(45,112,134,142),(47,114,136,144),(49,116,138,146),(51,118,140,148),(53,120,122,150),(55,102,124,152),(57,104,126,154),(59,106,128,156),(62,117,91,147),(64,119,93,149),(66,101,95,151),(68,103,97,153),(70,105,99,155),(72,107,81,157),(74,109,83,159),(76,111,85,141),(78,113,87,143),(80,115,89,145)], [(1,82,11,92),(2,81,12,91),(3,100,13,90),(4,99,14,89),(5,98,15,88),(6,97,16,87),(7,96,17,86),(8,95,18,85),(9,94,19,84),(10,93,20,83),(21,76,31,66),(22,75,32,65),(23,74,33,64),(24,73,34,63),(25,72,35,62),(26,71,36,61),(27,70,37,80),(28,69,38,79),(29,68,39,78),(30,67,40,77),(41,108,51,118),(42,107,52,117),(43,106,53,116),(44,105,54,115),(45,104,55,114),(46,103,56,113),(47,102,57,112),(48,101,58,111),(49,120,59,110),(50,119,60,109),(121,147,131,157),(122,146,132,156),(123,145,133,155),(124,144,134,154),(125,143,135,153),(126,142,136,152),(127,141,137,151),(128,160,138,150),(129,159,139,149),(130,158,140,148)]])

62 conjugacy classes

class 1 2A···2G2H2I4A···4F4G···4L5A5B10A···10N20A···20X
order12···2224···44···45510···1020···20
size11···120204···420···20222···24···4

62 irreducible representations

dim1111122222222444
type+++++++-++++--
imageC1C2C2C2C2D4D4Q8D5C4○D4D10D20C4○D20D4×D5D42D5Q8×D5
kernel(C2×C4).20D20C10.10C42C5×C2.C42C2×D10⋊C4C22×Dic10C2×Dic5C2×C20C22×D5C2.C42C2×C10C22×C4C2×C4C22C22C22C22
# reps12131422266816422

Matrix representation of (C2×C4).20D20 in GL6(𝔽41)

100000
010000
001000
000100
0000400
0000040
,
14300000
1190000
0034100
0033100
0000320
0000219
,
2410000
40170000
00112800
00223000
0000162
00001625
,
2410000
38170000
0014200
0052700
0000162
00001525

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[14,11,0,0,0,0,30,9,0,0,0,0,0,0,34,33,0,0,0,0,1,1,0,0,0,0,0,0,32,21,0,0,0,0,0,9],[24,40,0,0,0,0,1,17,0,0,0,0,0,0,11,22,0,0,0,0,28,30,0,0,0,0,0,0,16,16,0,0,0,0,2,25],[24,38,0,0,0,0,1,17,0,0,0,0,0,0,14,5,0,0,0,0,2,27,0,0,0,0,0,0,16,15,0,0,0,0,2,25] >;

(C2×C4).20D20 in GAP, Magma, Sage, TeX

(C_2\times C_4)._{20}D_{20}
% in TeX

G:=Group("(C2xC4).20D20");
// GroupNames label

G:=SmallGroup(320,300);
// by ID

G=gap.SmallGroup(320,300);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,64,926,387,268,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=1,d^2=b^10,c*b*c^-1=a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b^-1,d*c*d^-1=b^10*c^-1>;
// generators/relations

׿
×
𝔽