Copied to
clipboard

G = (C2×C4)⋊6D20order 320 = 26·5

1st semidirect product of C2×C4 and D20 acting via D20/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C4)⋊6D20, (C2×C20)⋊28D4, (C2×C42)⋊6D5, (C2×D20)⋊18C4, C10.48(C4×D4), C2.19(C4×D20), C207(C22⋊C4), C42(D10⋊C4), C2.2(C204D4), C2.2(C207D4), (C22×D20).4C2, C22.39(C2×D20), C10.10(C41D4), C10.56(C4⋊D4), C2.3(C4.D20), (C22×C4).399D10, C10.12(C4.4D4), C22.48(C4○D20), C52(C24.3C22), (C23×D5).11C22, C23.272(C22×D5), (C22×C20).478C22, (C22×C10).314C23, (C22×Dic5).32C22, (C2×C4×C20)⋊7C2, (C2×C4⋊Dic5)⋊7C2, (C2×C4).111(C4×D5), (C2×D10⋊C4)⋊2C2, C22.119(C2×C4×D5), (C2×C20).398(C2×C4), (C2×C10).428(C2×D4), C2.6(C2×D10⋊C4), C10.74(C2×C22⋊C4), C22.43(C2×C5⋊D4), (C2×C10).73(C4○D4), (C2×C4).239(C5⋊D4), (C22×D5).23(C2×C4), (C2×C10).201(C22×C4), SmallGroup(320,566)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×C4)⋊6D20
C1C5C10C2×C10C22×C10C23×D5C22×D20 — (C2×C4)⋊6D20
C5C2×C10 — (C2×C4)⋊6D20
C1C23C2×C42

Generators and relations for (C2×C4)⋊6D20
 G = < a,b,c,d | a2=b4=c20=d2=1, dbd=ab=ba, ac=ca, ad=da, bc=cb, dcd=c-1 >

Subgroups: 1182 in 258 conjugacy classes, 87 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C24.3C22, C4⋊Dic5, D10⋊C4, C4×C20, C2×D20, C2×D20, C22×Dic5, C22×C20, C22×C20, C23×D5, C2×C4⋊Dic5, C2×D10⋊C4, C2×C4×C20, C22×D20, (C2×C4)⋊6D20
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, D10, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C4×D5, D20, C5⋊D4, C22×D5, C24.3C22, D10⋊C4, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C4×D20, C204D4, C4.D20, C2×D10⋊C4, C207D4, (C2×C4)⋊6D20

Smallest permutation representation of (C2×C4)⋊6D20
On 160 points
Generators in S160
(1 44)(2 45)(3 46)(4 47)(5 48)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 41)(19 42)(20 43)(21 117)(22 118)(23 119)(24 120)(25 101)(26 102)(27 103)(28 104)(29 105)(30 106)(31 107)(32 108)(33 109)(34 110)(35 111)(36 112)(37 113)(38 114)(39 115)(40 116)(61 144)(62 145)(63 146)(64 147)(65 148)(66 149)(67 150)(68 151)(69 152)(70 153)(71 154)(72 155)(73 156)(74 157)(75 158)(76 159)(77 160)(78 141)(79 142)(80 143)(81 134)(82 135)(83 136)(84 137)(85 138)(86 139)(87 140)(88 121)(89 122)(90 123)(91 124)(92 125)(93 126)(94 127)(95 128)(96 129)(97 130)(98 131)(99 132)(100 133)
(1 104 125 149)(2 105 126 150)(3 106 127 151)(4 107 128 152)(5 108 129 153)(6 109 130 154)(7 110 131 155)(8 111 132 156)(9 112 133 157)(10 113 134 158)(11 114 135 159)(12 115 136 160)(13 116 137 141)(14 117 138 142)(15 118 139 143)(16 119 140 144)(17 120 121 145)(18 101 122 146)(19 102 123 147)(20 103 124 148)(21 85 79 57)(22 86 80 58)(23 87 61 59)(24 88 62 60)(25 89 63 41)(26 90 64 42)(27 91 65 43)(28 92 66 44)(29 93 67 45)(30 94 68 46)(31 95 69 47)(32 96 70 48)(33 97 71 49)(34 98 72 50)(35 99 73 51)(36 100 74 52)(37 81 75 53)(38 82 76 54)(39 83 77 55)(40 84 78 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 42)(8 41)(9 60)(10 59)(11 58)(12 57)(13 56)(14 55)(15 54)(16 53)(17 52)(18 51)(19 50)(20 49)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(61 75)(62 74)(63 73)(64 72)(65 71)(66 70)(67 69)(76 80)(77 79)(81 140)(82 139)(83 138)(84 137)(85 136)(86 135)(87 134)(88 133)(89 132)(90 131)(91 130)(92 129)(93 128)(94 127)(95 126)(96 125)(97 124)(98 123)(99 122)(100 121)(101 111)(102 110)(103 109)(104 108)(105 107)(112 120)(113 119)(114 118)(115 117)(142 160)(143 159)(144 158)(145 157)(146 156)(147 155)(148 154)(149 153)(150 152)

G:=sub<Sym(160)| (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,41)(19,42)(20,43)(21,117)(22,118)(23,119)(24,120)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,141)(79,142)(80,143)(81,134)(82,135)(83,136)(84,137)(85,138)(86,139)(87,140)(88,121)(89,122)(90,123)(91,124)(92,125)(93,126)(94,127)(95,128)(96,129)(97,130)(98,131)(99,132)(100,133), (1,104,125,149)(2,105,126,150)(3,106,127,151)(4,107,128,152)(5,108,129,153)(6,109,130,154)(7,110,131,155)(8,111,132,156)(9,112,133,157)(10,113,134,158)(11,114,135,159)(12,115,136,160)(13,116,137,141)(14,117,138,142)(15,118,139,143)(16,119,140,144)(17,120,121,145)(18,101,122,146)(19,102,123,147)(20,103,124,148)(21,85,79,57)(22,86,80,58)(23,87,61,59)(24,88,62,60)(25,89,63,41)(26,90,64,42)(27,91,65,43)(28,92,66,44)(29,93,67,45)(30,94,68,46)(31,95,69,47)(32,96,70,48)(33,97,71,49)(34,98,72,50)(35,99,73,51)(36,100,74,52)(37,81,75,53)(38,82,76,54)(39,83,77,55)(40,84,78,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(76,80)(77,79)(81,140)(82,139)(83,138)(84,137)(85,136)(86,135)(87,134)(88,133)(89,132)(90,131)(91,130)(92,129)(93,128)(94,127)(95,126)(96,125)(97,124)(98,123)(99,122)(100,121)(101,111)(102,110)(103,109)(104,108)(105,107)(112,120)(113,119)(114,118)(115,117)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152)>;

G:=Group( (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,41)(19,42)(20,43)(21,117)(22,118)(23,119)(24,120)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,141)(79,142)(80,143)(81,134)(82,135)(83,136)(84,137)(85,138)(86,139)(87,140)(88,121)(89,122)(90,123)(91,124)(92,125)(93,126)(94,127)(95,128)(96,129)(97,130)(98,131)(99,132)(100,133), (1,104,125,149)(2,105,126,150)(3,106,127,151)(4,107,128,152)(5,108,129,153)(6,109,130,154)(7,110,131,155)(8,111,132,156)(9,112,133,157)(10,113,134,158)(11,114,135,159)(12,115,136,160)(13,116,137,141)(14,117,138,142)(15,118,139,143)(16,119,140,144)(17,120,121,145)(18,101,122,146)(19,102,123,147)(20,103,124,148)(21,85,79,57)(22,86,80,58)(23,87,61,59)(24,88,62,60)(25,89,63,41)(26,90,64,42)(27,91,65,43)(28,92,66,44)(29,93,67,45)(30,94,68,46)(31,95,69,47)(32,96,70,48)(33,97,71,49)(34,98,72,50)(35,99,73,51)(36,100,74,52)(37,81,75,53)(38,82,76,54)(39,83,77,55)(40,84,78,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(76,80)(77,79)(81,140)(82,139)(83,138)(84,137)(85,136)(86,135)(87,134)(88,133)(89,132)(90,131)(91,130)(92,129)(93,128)(94,127)(95,126)(96,125)(97,124)(98,123)(99,122)(100,121)(101,111)(102,110)(103,109)(104,108)(105,107)(112,120)(113,119)(114,118)(115,117)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152) );

G=PermutationGroup([[(1,44),(2,45),(3,46),(4,47),(5,48),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,41),(19,42),(20,43),(21,117),(22,118),(23,119),(24,120),(25,101),(26,102),(27,103),(28,104),(29,105),(30,106),(31,107),(32,108),(33,109),(34,110),(35,111),(36,112),(37,113),(38,114),(39,115),(40,116),(61,144),(62,145),(63,146),(64,147),(65,148),(66,149),(67,150),(68,151),(69,152),(70,153),(71,154),(72,155),(73,156),(74,157),(75,158),(76,159),(77,160),(78,141),(79,142),(80,143),(81,134),(82,135),(83,136),(84,137),(85,138),(86,139),(87,140),(88,121),(89,122),(90,123),(91,124),(92,125),(93,126),(94,127),(95,128),(96,129),(97,130),(98,131),(99,132),(100,133)], [(1,104,125,149),(2,105,126,150),(3,106,127,151),(4,107,128,152),(5,108,129,153),(6,109,130,154),(7,110,131,155),(8,111,132,156),(9,112,133,157),(10,113,134,158),(11,114,135,159),(12,115,136,160),(13,116,137,141),(14,117,138,142),(15,118,139,143),(16,119,140,144),(17,120,121,145),(18,101,122,146),(19,102,123,147),(20,103,124,148),(21,85,79,57),(22,86,80,58),(23,87,61,59),(24,88,62,60),(25,89,63,41),(26,90,64,42),(27,91,65,43),(28,92,66,44),(29,93,67,45),(30,94,68,46),(31,95,69,47),(32,96,70,48),(33,97,71,49),(34,98,72,50),(35,99,73,51),(36,100,74,52),(37,81,75,53),(38,82,76,54),(39,83,77,55),(40,84,78,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,42),(8,41),(9,60),(10,59),(11,58),(12,57),(13,56),(14,55),(15,54),(16,53),(17,52),(18,51),(19,50),(20,49),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(61,75),(62,74),(63,73),(64,72),(65,71),(66,70),(67,69),(76,80),(77,79),(81,140),(82,139),(83,138),(84,137),(85,136),(86,135),(87,134),(88,133),(89,132),(90,131),(91,130),(92,129),(93,128),(94,127),(95,126),(96,125),(97,124),(98,123),(99,122),(100,121),(101,111),(102,110),(103,109),(104,108),(105,107),(112,120),(113,119),(114,118),(115,117),(142,160),(143,159),(144,158),(145,157),(146,156),(147,155),(148,154),(149,153),(150,152)]])

92 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4L4M4N4O4P5A5B10A···10N20A···20AV
order12···222224···444445510···1020···20
size11···1202020202···220202020222···22···2

92 irreducible representations

dim11111122222222
type+++++++++
imageC1C2C2C2C2C4D4D5C4○D4D10C4×D5D20C5⋊D4C4○D20
kernel(C2×C4)⋊6D20C2×C4⋊Dic5C2×D10⋊C4C2×C4×C20C22×D20C2×D20C2×C20C2×C42C2×C10C22×C4C2×C4C2×C4C2×C4C22
# reps1141188246824816

Matrix representation of (C2×C4)⋊6D20 in GL6(𝔽41)

100000
010000
001000
000100
0000400
0000040
,
100000
010000
009000
000900
00003032
0000911
,
16300000
2720000
0035100
0054000
0000911
00003014
,
40400000
010000
00404000
000100
0000040
0000400

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,30,9,0,0,0,0,32,11],[16,27,0,0,0,0,30,2,0,0,0,0,0,0,35,5,0,0,0,0,1,40,0,0,0,0,0,0,9,30,0,0,0,0,11,14],[40,0,0,0,0,0,40,1,0,0,0,0,0,0,40,0,0,0,0,0,40,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0] >;

(C2×C4)⋊6D20 in GAP, Magma, Sage, TeX

(C_2\times C_4)\rtimes_6D_{20}
% in TeX

G:=Group("(C2xC4):6D20");
// GroupNames label

G:=SmallGroup(320,566);
// by ID

G=gap.SmallGroup(320,566);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,758,58,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^20=d^2=1,d*b*d=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽