Extensions 1→N→G→Q→1 with N=C6 and Q=C3xC18

Direct product G=NxQ with N=C6 and Q=C3xC18
dρLabelID
C3xC6xC18324C3xC6xC18324,151

Semidirect products G=N:Q with N=C6 and Q=C3xC18
extensionφ:Q→Aut NdρLabelID
C6:(C3xC18) = S3xC3xC18φ: C3xC18/C3xC9C2 ⊆ Aut C6108C6:(C3xC18)324,137

Non-split extensions G=N.Q with N=C6 and Q=C3xC18
extensionφ:Q→Aut NdρLabelID
C6.(C3xC18) = Dic3xC3xC9φ: C3xC18/C3xC9C2 ⊆ Aut C6108C6.(C3xC18)324,91
C6.2(C3xC18) = C4xC32:C9central extension (φ=1)108C6.2(C3xC18)324,27
C6.3(C3xC18) = C4xC9:C9central extension (φ=1)324C6.3(C3xC18)324,28
C6.4(C3xC18) = C4xC27:C3central extension (φ=1)1083C6.4(C3xC18)324,30
C6.5(C3xC18) = C22xC32:C9central extension (φ=1)108C6.5(C3xC18)324,82
C6.6(C3xC18) = C22xC9:C9central extension (φ=1)324C6.6(C3xC18)324,83
C6.7(C3xC18) = C22xC27:C3central extension (φ=1)108C6.7(C3xC18)324,85

׿
x
:
Z
F
o
wr
Q
<