Extensions 1→N→G→Q→1 with N=C6 and Q=C3×C18

Direct product G=N×Q with N=C6 and Q=C3×C18
dρLabelID
C3×C6×C18324C3xC6xC18324,151

Semidirect products G=N:Q with N=C6 and Q=C3×C18
extensionφ:Q→Aut NdρLabelID
C6⋊(C3×C18) = S3×C3×C18φ: C3×C18/C3×C9C2 ⊆ Aut C6108C6:(C3xC18)324,137

Non-split extensions G=N.Q with N=C6 and Q=C3×C18
extensionφ:Q→Aut NdρLabelID
C6.(C3×C18) = Dic3×C3×C9φ: C3×C18/C3×C9C2 ⊆ Aut C6108C6.(C3xC18)324,91
C6.2(C3×C18) = C4×C32⋊C9central extension (φ=1)108C6.2(C3xC18)324,27
C6.3(C3×C18) = C4×C9⋊C9central extension (φ=1)324C6.3(C3xC18)324,28
C6.4(C3×C18) = C4×C27⋊C3central extension (φ=1)1083C6.4(C3xC18)324,30
C6.5(C3×C18) = C22×C32⋊C9central extension (φ=1)108C6.5(C3xC18)324,82
C6.6(C3×C18) = C22×C9⋊C9central extension (φ=1)324C6.6(C3xC18)324,83
C6.7(C3×C18) = C22×C27⋊C3central extension (φ=1)108C6.7(C3xC18)324,85

׿
×
𝔽