direct product, abelian, monomial, 3-elementary
Aliases: C3×C18, SmallGroup(54,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3×C18 |
C1 — C3×C18 |
C1 — C3×C18 |
Generators and relations for C3×C18
G = < a,b | a3=b18=1, ab=ba >
(1 28 48)(2 29 49)(3 30 50)(4 31 51)(5 32 52)(6 33 53)(7 34 54)(8 35 37)(9 36 38)(10 19 39)(11 20 40)(12 21 41)(13 22 42)(14 23 43)(15 24 44)(16 25 45)(17 26 46)(18 27 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
G:=sub<Sym(54)| (1,28,48)(2,29,49)(3,30,50)(4,31,51)(5,32,52)(6,33,53)(7,34,54)(8,35,37)(9,36,38)(10,19,39)(11,20,40)(12,21,41)(13,22,42)(14,23,43)(15,24,44)(16,25,45)(17,26,46)(18,27,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;
G:=Group( (1,28,48)(2,29,49)(3,30,50)(4,31,51)(5,32,52)(6,33,53)(7,34,54)(8,35,37)(9,36,38)(10,19,39)(11,20,40)(12,21,41)(13,22,42)(14,23,43)(15,24,44)(16,25,45)(17,26,46)(18,27,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );
G=PermutationGroup([[(1,28,48),(2,29,49),(3,30,50),(4,31,51),(5,32,52),(6,33,53),(7,34,54),(8,35,37),(9,36,38),(10,19,39),(11,20,40),(12,21,41),(13,22,42),(14,23,43),(15,24,44),(16,25,45),(17,26,46),(18,27,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])
C3×C18 is a maximal subgroup of
C9⋊Dic3
54 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 6A | ··· | 6H | 9A | ··· | 9R | 18A | ··· | 18R |
order | 1 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | C9 | C18 |
kernel | C3×C18 | C3×C9 | C18 | C3×C6 | C9 | C32 | C6 | C3 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 18 | 18 |
Matrix representation of C3×C18 ►in GL2(𝔽19) generated by
7 | 0 |
0 | 11 |
5 | 0 |
0 | 3 |
G:=sub<GL(2,GF(19))| [7,0,0,11],[5,0,0,3] >;
C3×C18 in GAP, Magma, Sage, TeX
C_3\times C_{18}
% in TeX
G:=Group("C3xC18");
// GroupNames label
G:=SmallGroup(54,9);
// by ID
G=gap.SmallGroup(54,9);
# by ID
G:=PCGroup([4,-2,-3,-3,-3,77]);
// Polycyclic
G:=Group<a,b|a^3=b^18=1,a*b=b*a>;
// generators/relations
Export