Extensions 1→N→G→Q→1 with N=Dic3×D7 and Q=C2

Direct product G=N×Q with N=Dic3×D7 and Q=C2
dρLabelID
C2×Dic3×D7168C2xDic3xD7336,151

Semidirect products G=N:Q with N=Dic3×D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×D7)⋊1C2 = D285S3φ: C2/C1C2 ⊆ Out Dic3×D71684-(Dic3xD7):1C2336,138
(Dic3×D7)⋊2C2 = D28⋊S3φ: C2/C1C2 ⊆ Out Dic3×D71684(Dic3xD7):2C2336,139
(Dic3×D7)⋊3C2 = Dic7.D6φ: C2/C1C2 ⊆ Out Dic3×D71684(Dic3xD7):3C2336,152
(Dic3×D7)⋊4C2 = C42.C23φ: C2/C1C2 ⊆ Out Dic3×D71684-(Dic3xD7):4C2336,153
(Dic3×D7)⋊5C2 = D7×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×D7844(Dic3xD7):5C2336,161
(Dic3×D7)⋊6C2 = C4×S3×D7φ: trivial image844(Dic3xD7):6C2336,147

Non-split extensions G=N.Q with N=Dic3×D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×D7).C2 = D7×Dic6φ: C2/C1C2 ⊆ Out Dic3×D71684-(Dic3xD7).C2336,137

׿
×
𝔽