metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D28⋊5S3, D14.1D6, D6.5D14, C28.26D6, Dic42⋊6C2, C12.13D14, C42.2C23, C84.12C22, Dic3.10D14, Dic21.2C22, (C4×S3)⋊1D7, C4.5(S3×D7), (S3×C28)⋊1C2, (C3×D28)⋊2C2, C3⋊3(C4○D28), C21⋊1(C4○D4), C21⋊D4⋊1C2, C7⋊2(D4⋊2S3), (Dic3×D7)⋊1C2, C6.2(C22×D7), C14.2(C22×S3), (C6×D7).1C22, (S3×C14).5C22, (C7×Dic3).7C22, C2.6(C2×S3×D7), SmallGroup(336,138)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D28⋊5S3
G = < a,b,c,d | a28=b2=c3=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a14b, dcd=c-1 >
Subgroups: 420 in 80 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C7, C2×C4, D4, Q8, Dic3, Dic3, C12, D6, C2×C6, D7, C14, C14, C4○D4, C21, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, Dic7, C28, C28, D14, C2×C14, S3×C7, C3×D7, C42, D4⋊2S3, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C7×Dic3, Dic21, C84, C6×D7, S3×C14, C4○D28, Dic3×D7, C21⋊D4, C3×D28, S3×C28, Dic42, D28⋊5S3
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, D4⋊2S3, C22×D7, S3×D7, C4○D28, C2×S3×D7, D28⋊5S3
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 53)(30 52)(31 51)(32 50)(33 49)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)(54 56)(57 83)(58 82)(59 81)(60 80)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)(85 105)(86 104)(87 103)(88 102)(89 101)(90 100)(91 99)(92 98)(93 97)(94 96)(106 112)(107 111)(108 110)(113 131)(114 130)(115 129)(116 128)(117 127)(118 126)(119 125)(120 124)(121 123)(132 140)(133 139)(134 138)(135 137)(141 157)(142 156)(143 155)(144 154)(145 153)(146 152)(147 151)(148 150)(158 168)(159 167)(160 166)(161 165)(162 164)
(1 81 106)(2 82 107)(3 83 108)(4 84 109)(5 57 110)(6 58 111)(7 59 112)(8 60 85)(9 61 86)(10 62 87)(11 63 88)(12 64 89)(13 65 90)(14 66 91)(15 67 92)(16 68 93)(17 69 94)(18 70 95)(19 71 96)(20 72 97)(21 73 98)(22 74 99)(23 75 100)(24 76 101)(25 77 102)(26 78 103)(27 79 104)(28 80 105)(29 165 138)(30 166 139)(31 167 140)(32 168 113)(33 141 114)(34 142 115)(35 143 116)(36 144 117)(37 145 118)(38 146 119)(39 147 120)(40 148 121)(41 149 122)(42 150 123)(43 151 124)(44 152 125)(45 153 126)(46 154 127)(47 155 128)(48 156 129)(49 157 130)(50 158 131)(51 159 132)(52 160 133)(53 161 134)(54 162 135)(55 163 136)(56 164 137)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(57 130)(58 131)(59 132)(60 133)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 113)(69 114)(70 115)(71 116)(72 117)(73 118)(74 119)(75 120)(76 121)(77 122)(78 123)(79 124)(80 125)(81 126)(82 127)(83 128)(84 129)(85 160)(86 161)(87 162)(88 163)(89 164)(90 165)(91 166)(92 167)(93 168)(94 141)(95 142)(96 143)(97 144)(98 145)(99 146)(100 147)(101 148)(102 149)(103 150)(104 151)(105 152)(106 153)(107 154)(108 155)(109 156)(110 157)(111 158)(112 159)
G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(54,56)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,98)(93,97)(94,96)(106,112)(107,111)(108,110)(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)(121,123)(132,140)(133,139)(134,138)(135,137)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,150)(158,168)(159,167)(160,166)(161,165)(162,164), (1,81,106)(2,82,107)(3,83,108)(4,84,109)(5,57,110)(6,58,111)(7,59,112)(8,60,85)(9,61,86)(10,62,87)(11,63,88)(12,64,89)(13,65,90)(14,66,91)(15,67,92)(16,68,93)(17,69,94)(18,70,95)(19,71,96)(20,72,97)(21,73,98)(22,74,99)(23,75,100)(24,76,101)(25,77,102)(26,78,103)(27,79,104)(28,80,105)(29,165,138)(30,166,139)(31,167,140)(32,168,113)(33,141,114)(34,142,115)(35,143,116)(36,144,117)(37,145,118)(38,146,119)(39,147,120)(40,148,121)(41,149,122)(42,150,123)(43,151,124)(44,152,125)(45,153,126)(46,154,127)(47,155,128)(48,156,129)(49,157,130)(50,158,131)(51,159,132)(52,160,133)(53,161,134)(54,162,135)(55,163,136)(56,164,137), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,127)(83,128)(84,129)(85,160)(86,161)(87,162)(88,163)(89,164)(90,165)(91,166)(92,167)(93,168)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(54,56)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,98)(93,97)(94,96)(106,112)(107,111)(108,110)(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)(121,123)(132,140)(133,139)(134,138)(135,137)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,150)(158,168)(159,167)(160,166)(161,165)(162,164), (1,81,106)(2,82,107)(3,83,108)(4,84,109)(5,57,110)(6,58,111)(7,59,112)(8,60,85)(9,61,86)(10,62,87)(11,63,88)(12,64,89)(13,65,90)(14,66,91)(15,67,92)(16,68,93)(17,69,94)(18,70,95)(19,71,96)(20,72,97)(21,73,98)(22,74,99)(23,75,100)(24,76,101)(25,77,102)(26,78,103)(27,79,104)(28,80,105)(29,165,138)(30,166,139)(31,167,140)(32,168,113)(33,141,114)(34,142,115)(35,143,116)(36,144,117)(37,145,118)(38,146,119)(39,147,120)(40,148,121)(41,149,122)(42,150,123)(43,151,124)(44,152,125)(45,153,126)(46,154,127)(47,155,128)(48,156,129)(49,157,130)(50,158,131)(51,159,132)(52,160,133)(53,161,134)(54,162,135)(55,163,136)(56,164,137), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,127)(83,128)(84,129)(85,160)(86,161)(87,162)(88,163)(89,164)(90,165)(91,166)(92,167)(93,168)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,53),(30,52),(31,51),(32,50),(33,49),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42),(54,56),(57,83),(58,82),(59,81),(60,80),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71),(85,105),(86,104),(87,103),(88,102),(89,101),(90,100),(91,99),(92,98),(93,97),(94,96),(106,112),(107,111),(108,110),(113,131),(114,130),(115,129),(116,128),(117,127),(118,126),(119,125),(120,124),(121,123),(132,140),(133,139),(134,138),(135,137),(141,157),(142,156),(143,155),(144,154),(145,153),(146,152),(147,151),(148,150),(158,168),(159,167),(160,166),(161,165),(162,164)], [(1,81,106),(2,82,107),(3,83,108),(4,84,109),(5,57,110),(6,58,111),(7,59,112),(8,60,85),(9,61,86),(10,62,87),(11,63,88),(12,64,89),(13,65,90),(14,66,91),(15,67,92),(16,68,93),(17,69,94),(18,70,95),(19,71,96),(20,72,97),(21,73,98),(22,74,99),(23,75,100),(24,76,101),(25,77,102),(26,78,103),(27,79,104),(28,80,105),(29,165,138),(30,166,139),(31,167,140),(32,168,113),(33,141,114),(34,142,115),(35,143,116),(36,144,117),(37,145,118),(38,146,119),(39,147,120),(40,148,121),(41,149,122),(42,150,123),(43,151,124),(44,152,125),(45,153,126),(46,154,127),(47,155,128),(48,156,129),(49,157,130),(50,158,131),(51,159,132),(52,160,133),(53,161,134),(54,162,135),(55,163,136),(56,164,137)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(57,130),(58,131),(59,132),(60,133),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,113),(69,114),(70,115),(71,116),(72,117),(73,118),(74,119),(75,120),(76,121),(77,122),(78,123),(79,124),(80,125),(81,126),(82,127),(83,128),(84,129),(85,160),(86,161),(87,162),(88,163),(89,164),(90,165),(91,166),(92,167),(93,168),(94,141),(95,142),(96,143),(97,144),(98,145),(99,146),(100,147),(101,148),(102,149),(103,150),(104,151),(105,152),(106,153),(107,154),(108,155),(109,156),(110,157),(111,158),(112,159)]])
51 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 7A | 7B | 7C | 12 | 14A | 14B | 14C | 14D | ··· | 14I | 21A | 21B | 21C | 28A | ··· | 28F | 28G | ··· | 28L | 42A | 42B | 42C | 84A | ··· | 84F |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 7 | 7 | 7 | 12 | 14 | 14 | 14 | 14 | ··· | 14 | 21 | 21 | 21 | 28 | ··· | 28 | 28 | ··· | 28 | 42 | 42 | 42 | 84 | ··· | 84 |
size | 1 | 1 | 6 | 14 | 14 | 2 | 2 | 3 | 3 | 42 | 42 | 2 | 28 | 28 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 6 | ··· | 6 | 4 | 4 | 4 | 2 | ··· | 2 | 6 | ··· | 6 | 4 | 4 | 4 | 4 | ··· | 4 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D7 | C4○D4 | D14 | D14 | D14 | C4○D28 | D4⋊2S3 | S3×D7 | C2×S3×D7 | D28⋊5S3 |
kernel | D28⋊5S3 | Dic3×D7 | C21⋊D4 | C3×D28 | S3×C28 | Dic42 | D28 | C28 | D14 | C4×S3 | C21 | Dic3 | C12 | D6 | C3 | C7 | C4 | C2 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 3 | 3 | 12 | 1 | 3 | 3 | 6 |
Matrix representation of D28⋊5S3 ►in GL6(𝔽337)
178 | 196 | 0 | 0 | 0 | 0 |
12 | 159 | 0 | 0 | 0 | 0 |
0 | 0 | 33 | 227 | 0 | 0 |
0 | 0 | 110 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 0 | 336 |
336 | 0 | 0 | 0 | 0 | 0 |
160 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 304 | 110 | 0 | 0 |
0 | 0 | 33 | 33 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 |
0 | 0 | 0 | 0 | 1 | 336 |
58 | 26 | 0 | 0 | 0 | 0 |
91 | 279 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 329 | 214 |
0 | 0 | 0 | 0 | 206 | 8 |
G:=sub<GL(6,GF(337))| [178,12,0,0,0,0,196,159,0,0,0,0,0,0,33,110,0,0,0,0,227,1,0,0,0,0,0,0,336,0,0,0,0,0,0,336],[336,160,0,0,0,0,0,1,0,0,0,0,0,0,304,33,0,0,0,0,110,33,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,336,336],[58,91,0,0,0,0,26,279,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,329,206,0,0,0,0,214,8] >;
D28⋊5S3 in GAP, Magma, Sage, TeX
D_{28}\rtimes_5S_3
% in TeX
G:=Group("D28:5S3");
// GroupNames label
G:=SmallGroup(336,138);
// by ID
G=gap.SmallGroup(336,138);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-7,55,218,50,490,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^28=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^14*b,d*c*d=c^-1>;
// generators/relations