Copied to
clipboard

G = D285S3order 336 = 24·3·7

The semidirect product of D28 and S3 acting through Inn(D28)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D285S3, D14.1D6, D6.5D14, C28.26D6, Dic426C2, C12.13D14, C42.2C23, C84.12C22, Dic3.10D14, Dic21.2C22, (C4×S3)⋊1D7, C4.5(S3×D7), (S3×C28)⋊1C2, (C3×D28)⋊2C2, C33(C4○D28), C211(C4○D4), C21⋊D41C2, C72(D42S3), (Dic3×D7)⋊1C2, C6.2(C22×D7), C14.2(C22×S3), (C6×D7).1C22, (S3×C14).5C22, (C7×Dic3).7C22, C2.6(C2×S3×D7), SmallGroup(336,138)

Series: Derived Chief Lower central Upper central

C1C42 — D285S3
C1C7C21C42C6×D7Dic3×D7 — D285S3
C21C42 — D285S3
C1C2C4

Generators and relations for D285S3
 G = < a,b,c,d | a28=b2=c3=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a14b, dcd=c-1 >

Subgroups: 420 in 80 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C7, C2×C4, D4, Q8, Dic3, Dic3, C12, D6, C2×C6, D7, C14, C14, C4○D4, C21, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, Dic7, C28, C28, D14, C2×C14, S3×C7, C3×D7, C42, D42S3, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C7×Dic3, Dic21, C84, C6×D7, S3×C14, C4○D28, Dic3×D7, C21⋊D4, C3×D28, S3×C28, Dic42, D285S3
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, D42S3, C22×D7, S3×D7, C4○D28, C2×S3×D7, D285S3

Smallest permutation representation of D285S3
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 53)(30 52)(31 51)(32 50)(33 49)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)(54 56)(57 83)(58 82)(59 81)(60 80)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)(85 105)(86 104)(87 103)(88 102)(89 101)(90 100)(91 99)(92 98)(93 97)(94 96)(106 112)(107 111)(108 110)(113 131)(114 130)(115 129)(116 128)(117 127)(118 126)(119 125)(120 124)(121 123)(132 140)(133 139)(134 138)(135 137)(141 157)(142 156)(143 155)(144 154)(145 153)(146 152)(147 151)(148 150)(158 168)(159 167)(160 166)(161 165)(162 164)
(1 81 106)(2 82 107)(3 83 108)(4 84 109)(5 57 110)(6 58 111)(7 59 112)(8 60 85)(9 61 86)(10 62 87)(11 63 88)(12 64 89)(13 65 90)(14 66 91)(15 67 92)(16 68 93)(17 69 94)(18 70 95)(19 71 96)(20 72 97)(21 73 98)(22 74 99)(23 75 100)(24 76 101)(25 77 102)(26 78 103)(27 79 104)(28 80 105)(29 165 138)(30 166 139)(31 167 140)(32 168 113)(33 141 114)(34 142 115)(35 143 116)(36 144 117)(37 145 118)(38 146 119)(39 147 120)(40 148 121)(41 149 122)(42 150 123)(43 151 124)(44 152 125)(45 153 126)(46 154 127)(47 155 128)(48 156 129)(49 157 130)(50 158 131)(51 159 132)(52 160 133)(53 161 134)(54 162 135)(55 163 136)(56 164 137)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(57 130)(58 131)(59 132)(60 133)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 113)(69 114)(70 115)(71 116)(72 117)(73 118)(74 119)(75 120)(76 121)(77 122)(78 123)(79 124)(80 125)(81 126)(82 127)(83 128)(84 129)(85 160)(86 161)(87 162)(88 163)(89 164)(90 165)(91 166)(92 167)(93 168)(94 141)(95 142)(96 143)(97 144)(98 145)(99 146)(100 147)(101 148)(102 149)(103 150)(104 151)(105 152)(106 153)(107 154)(108 155)(109 156)(110 157)(111 158)(112 159)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(54,56)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,98)(93,97)(94,96)(106,112)(107,111)(108,110)(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)(121,123)(132,140)(133,139)(134,138)(135,137)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,150)(158,168)(159,167)(160,166)(161,165)(162,164), (1,81,106)(2,82,107)(3,83,108)(4,84,109)(5,57,110)(6,58,111)(7,59,112)(8,60,85)(9,61,86)(10,62,87)(11,63,88)(12,64,89)(13,65,90)(14,66,91)(15,67,92)(16,68,93)(17,69,94)(18,70,95)(19,71,96)(20,72,97)(21,73,98)(22,74,99)(23,75,100)(24,76,101)(25,77,102)(26,78,103)(27,79,104)(28,80,105)(29,165,138)(30,166,139)(31,167,140)(32,168,113)(33,141,114)(34,142,115)(35,143,116)(36,144,117)(37,145,118)(38,146,119)(39,147,120)(40,148,121)(41,149,122)(42,150,123)(43,151,124)(44,152,125)(45,153,126)(46,154,127)(47,155,128)(48,156,129)(49,157,130)(50,158,131)(51,159,132)(52,160,133)(53,161,134)(54,162,135)(55,163,136)(56,164,137), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,127)(83,128)(84,129)(85,160)(86,161)(87,162)(88,163)(89,164)(90,165)(91,166)(92,167)(93,168)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(54,56)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,98)(93,97)(94,96)(106,112)(107,111)(108,110)(113,131)(114,130)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)(121,123)(132,140)(133,139)(134,138)(135,137)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,150)(158,168)(159,167)(160,166)(161,165)(162,164), (1,81,106)(2,82,107)(3,83,108)(4,84,109)(5,57,110)(6,58,111)(7,59,112)(8,60,85)(9,61,86)(10,62,87)(11,63,88)(12,64,89)(13,65,90)(14,66,91)(15,67,92)(16,68,93)(17,69,94)(18,70,95)(19,71,96)(20,72,97)(21,73,98)(22,74,99)(23,75,100)(24,76,101)(25,77,102)(26,78,103)(27,79,104)(28,80,105)(29,165,138)(30,166,139)(31,167,140)(32,168,113)(33,141,114)(34,142,115)(35,143,116)(36,144,117)(37,145,118)(38,146,119)(39,147,120)(40,148,121)(41,149,122)(42,150,123)(43,151,124)(44,152,125)(45,153,126)(46,154,127)(47,155,128)(48,156,129)(49,157,130)(50,158,131)(51,159,132)(52,160,133)(53,161,134)(54,162,135)(55,163,136)(56,164,137), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,127)(83,128)(84,129)(85,160)(86,161)(87,162)(88,163)(89,164)(90,165)(91,166)(92,167)(93,168)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,53),(30,52),(31,51),(32,50),(33,49),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42),(54,56),(57,83),(58,82),(59,81),(60,80),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71),(85,105),(86,104),(87,103),(88,102),(89,101),(90,100),(91,99),(92,98),(93,97),(94,96),(106,112),(107,111),(108,110),(113,131),(114,130),(115,129),(116,128),(117,127),(118,126),(119,125),(120,124),(121,123),(132,140),(133,139),(134,138),(135,137),(141,157),(142,156),(143,155),(144,154),(145,153),(146,152),(147,151),(148,150),(158,168),(159,167),(160,166),(161,165),(162,164)], [(1,81,106),(2,82,107),(3,83,108),(4,84,109),(5,57,110),(6,58,111),(7,59,112),(8,60,85),(9,61,86),(10,62,87),(11,63,88),(12,64,89),(13,65,90),(14,66,91),(15,67,92),(16,68,93),(17,69,94),(18,70,95),(19,71,96),(20,72,97),(21,73,98),(22,74,99),(23,75,100),(24,76,101),(25,77,102),(26,78,103),(27,79,104),(28,80,105),(29,165,138),(30,166,139),(31,167,140),(32,168,113),(33,141,114),(34,142,115),(35,143,116),(36,144,117),(37,145,118),(38,146,119),(39,147,120),(40,148,121),(41,149,122),(42,150,123),(43,151,124),(44,152,125),(45,153,126),(46,154,127),(47,155,128),(48,156,129),(49,157,130),(50,158,131),(51,159,132),(52,160,133),(53,161,134),(54,162,135),(55,163,136),(56,164,137)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(57,130),(58,131),(59,132),(60,133),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,113),(69,114),(70,115),(71,116),(72,117),(73,118),(74,119),(75,120),(76,121),(77,122),(78,123),(79,124),(80,125),(81,126),(82,127),(83,128),(84,129),(85,160),(86,161),(87,162),(88,163),(89,164),(90,165),(91,166),(92,167),(93,168),(94,141),(95,142),(96,143),(97,144),(98,145),(99,146),(100,147),(101,148),(102,149),(103,150),(104,151),(105,152),(106,153),(107,154),(108,155),(109,156),(110,157),(111,158),(112,159)]])

51 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C7A7B7C 12 14A14B14C14D···14I21A21B21C28A···28F28G···28L42A42B42C84A···84F
order122223444446667771214141414···1421212128···2828···2842424284···84
size1161414223342422282822242226···64442···26···64444···4

51 irreducible representations

dim1111112222222224444
type+++++++++++++-++-
imageC1C2C2C2C2C2S3D6D6D7C4○D4D14D14D14C4○D28D42S3S3×D7C2×S3×D7D285S3
kernelD285S3Dic3×D7C21⋊D4C3×D28S3×C28Dic42D28C28D14C4×S3C21Dic3C12D6C3C7C4C2C1
# reps12211111232333121336

Matrix representation of D285S3 in GL6(𝔽337)

1781960000
121590000
003322700
00110100
00003360
00000336
,
33600000
16010000
0030411000
00333300
000010
000001
,
100000
010000
001000
000100
00000336
00001336
,
58260000
912790000
001000
000100
0000329214
00002068

G:=sub<GL(6,GF(337))| [178,12,0,0,0,0,196,159,0,0,0,0,0,0,33,110,0,0,0,0,227,1,0,0,0,0,0,0,336,0,0,0,0,0,0,336],[336,160,0,0,0,0,0,1,0,0,0,0,0,0,304,33,0,0,0,0,110,33,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,336,336],[58,91,0,0,0,0,26,279,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,329,206,0,0,0,0,214,8] >;

D285S3 in GAP, Magma, Sage, TeX

D_{28}\rtimes_5S_3
% in TeX

G:=Group("D28:5S3");
// GroupNames label

G:=SmallGroup(336,138);
// by ID

G=gap.SmallGroup(336,138);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,55,218,50,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^14*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽