Copied to
clipboard

G = D28⋊S3order 336 = 24·3·7

3rd semidirect product of D28 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D283S3, Dic63D7, D14.2D6, C28.14D6, C12.14D14, C42.3C23, C84.26C22, Dic3.2D14, D42.8C22, Dic21.10C22, (C3×D28)⋊5C2, (C4×D21)⋊5C2, C212(C4○D4), C3⋊D281C2, C4.19(S3×D7), C71(D42S3), (Dic3×D7)⋊2C2, (C7×Dic6)⋊5C2, C32(Q82D7), C6.3(C22×D7), C14.3(C22×S3), (C6×D7).2C22, (C7×Dic3).2C22, C2.7(C2×S3×D7), SmallGroup(336,139)

Series: Derived Chief Lower central Upper central

C1C42 — D28⋊S3
C1C7C21C42C6×D7Dic3×D7 — D28⋊S3
C21C42 — D28⋊S3
C1C2C4

Generators and relations for D28⋊S3
 G = < a,b,c,d | a28=b2=c3=d2=1, bab=a-1, ac=ca, dad=a13, bc=cb, dbd=a26b, dcd=c-1 >

Subgroups: 468 in 80 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C7, C2×C4, D4, Q8, Dic3, Dic3, C12, D6, C2×C6, D7, C14, C4○D4, C21, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, Dic7, C28, C28, D14, D14, C3×D7, D21, C42, D42S3, C4×D7, D28, D28, C7×Q8, C7×Dic3, Dic21, C84, C6×D7, D42, Q82D7, Dic3×D7, C3⋊D28, C3×D28, C7×Dic6, C4×D21, D28⋊S3
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, D42S3, C22×D7, S3×D7, Q82D7, C2×S3×D7, D28⋊S3

Smallest permutation representation of D28⋊S3
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 159)(2 158)(3 157)(4 156)(5 155)(6 154)(7 153)(8 152)(9 151)(10 150)(11 149)(12 148)(13 147)(14 146)(15 145)(16 144)(17 143)(18 142)(19 141)(20 168)(21 167)(22 166)(23 165)(24 164)(25 163)(26 162)(27 161)(28 160)(29 136)(30 135)(31 134)(32 133)(33 132)(34 131)(35 130)(36 129)(37 128)(38 127)(39 126)(40 125)(41 124)(42 123)(43 122)(44 121)(45 120)(46 119)(47 118)(48 117)(49 116)(50 115)(51 114)(52 113)(53 140)(54 139)(55 138)(56 137)(57 109)(58 108)(59 107)(60 106)(61 105)(62 104)(63 103)(64 102)(65 101)(66 100)(67 99)(68 98)(69 97)(70 96)(71 95)(72 94)(73 93)(74 92)(75 91)(76 90)(77 89)(78 88)(79 87)(80 86)(81 85)(82 112)(83 111)(84 110)
(1 62 41)(2 63 42)(3 64 43)(4 65 44)(5 66 45)(6 67 46)(7 68 47)(8 69 48)(9 70 49)(10 71 50)(11 72 51)(12 73 52)(13 74 53)(14 75 54)(15 76 55)(16 77 56)(17 78 29)(18 79 30)(19 80 31)(20 81 32)(21 82 33)(22 83 34)(23 84 35)(24 57 36)(25 58 37)(26 59 38)(27 60 39)(28 61 40)(85 133 168)(86 134 141)(87 135 142)(88 136 143)(89 137 144)(90 138 145)(91 139 146)(92 140 147)(93 113 148)(94 114 149)(95 115 150)(96 116 151)(97 117 152)(98 118 153)(99 119 154)(100 120 155)(101 121 156)(102 122 157)(103 123 158)(104 124 159)(105 125 160)(106 126 161)(107 127 162)(108 128 163)(109 129 164)(110 130 165)(111 131 166)(112 132 167)
(2 14)(3 27)(4 12)(5 25)(6 10)(7 23)(9 21)(11 19)(13 17)(16 28)(18 26)(20 24)(29 74)(30 59)(31 72)(32 57)(33 70)(34 83)(35 68)(36 81)(37 66)(38 79)(39 64)(40 77)(41 62)(42 75)(43 60)(44 73)(45 58)(46 71)(47 84)(48 69)(49 82)(50 67)(51 80)(52 65)(53 78)(54 63)(55 76)(56 61)(85 131)(86 116)(87 129)(88 114)(89 127)(90 140)(91 125)(92 138)(93 123)(94 136)(95 121)(96 134)(97 119)(98 132)(99 117)(100 130)(101 115)(102 128)(103 113)(104 126)(105 139)(106 124)(107 137)(108 122)(109 135)(110 120)(111 133)(112 118)(141 151)(142 164)(143 149)(144 162)(145 147)(146 160)(148 158)(150 156)(152 154)(153 167)(155 165)(157 163)(159 161)(166 168)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,159)(2,158)(3,157)(4,156)(5,155)(6,154)(7,153)(8,152)(9,151)(10,150)(11,149)(12,148)(13,147)(14,146)(15,145)(16,144)(17,143)(18,142)(19,141)(20,168)(21,167)(22,166)(23,165)(24,164)(25,163)(26,162)(27,161)(28,160)(29,136)(30,135)(31,134)(32,133)(33,132)(34,131)(35,130)(36,129)(37,128)(38,127)(39,126)(40,125)(41,124)(42,123)(43,122)(44,121)(45,120)(46,119)(47,118)(48,117)(49,116)(50,115)(51,114)(52,113)(53,140)(54,139)(55,138)(56,137)(57,109)(58,108)(59,107)(60,106)(61,105)(62,104)(63,103)(64,102)(65,101)(66,100)(67,99)(68,98)(69,97)(70,96)(71,95)(72,94)(73,93)(74,92)(75,91)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,112)(83,111)(84,110), (1,62,41)(2,63,42)(3,64,43)(4,65,44)(5,66,45)(6,67,46)(7,68,47)(8,69,48)(9,70,49)(10,71,50)(11,72,51)(12,73,52)(13,74,53)(14,75,54)(15,76,55)(16,77,56)(17,78,29)(18,79,30)(19,80,31)(20,81,32)(21,82,33)(22,83,34)(23,84,35)(24,57,36)(25,58,37)(26,59,38)(27,60,39)(28,61,40)(85,133,168)(86,134,141)(87,135,142)(88,136,143)(89,137,144)(90,138,145)(91,139,146)(92,140,147)(93,113,148)(94,114,149)(95,115,150)(96,116,151)(97,117,152)(98,118,153)(99,119,154)(100,120,155)(101,121,156)(102,122,157)(103,123,158)(104,124,159)(105,125,160)(106,126,161)(107,127,162)(108,128,163)(109,129,164)(110,130,165)(111,131,166)(112,132,167), (2,14)(3,27)(4,12)(5,25)(6,10)(7,23)(9,21)(11,19)(13,17)(16,28)(18,26)(20,24)(29,74)(30,59)(31,72)(32,57)(33,70)(34,83)(35,68)(36,81)(37,66)(38,79)(39,64)(40,77)(41,62)(42,75)(43,60)(44,73)(45,58)(46,71)(47,84)(48,69)(49,82)(50,67)(51,80)(52,65)(53,78)(54,63)(55,76)(56,61)(85,131)(86,116)(87,129)(88,114)(89,127)(90,140)(91,125)(92,138)(93,123)(94,136)(95,121)(96,134)(97,119)(98,132)(99,117)(100,130)(101,115)(102,128)(103,113)(104,126)(105,139)(106,124)(107,137)(108,122)(109,135)(110,120)(111,133)(112,118)(141,151)(142,164)(143,149)(144,162)(145,147)(146,160)(148,158)(150,156)(152,154)(153,167)(155,165)(157,163)(159,161)(166,168)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,159)(2,158)(3,157)(4,156)(5,155)(6,154)(7,153)(8,152)(9,151)(10,150)(11,149)(12,148)(13,147)(14,146)(15,145)(16,144)(17,143)(18,142)(19,141)(20,168)(21,167)(22,166)(23,165)(24,164)(25,163)(26,162)(27,161)(28,160)(29,136)(30,135)(31,134)(32,133)(33,132)(34,131)(35,130)(36,129)(37,128)(38,127)(39,126)(40,125)(41,124)(42,123)(43,122)(44,121)(45,120)(46,119)(47,118)(48,117)(49,116)(50,115)(51,114)(52,113)(53,140)(54,139)(55,138)(56,137)(57,109)(58,108)(59,107)(60,106)(61,105)(62,104)(63,103)(64,102)(65,101)(66,100)(67,99)(68,98)(69,97)(70,96)(71,95)(72,94)(73,93)(74,92)(75,91)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,112)(83,111)(84,110), (1,62,41)(2,63,42)(3,64,43)(4,65,44)(5,66,45)(6,67,46)(7,68,47)(8,69,48)(9,70,49)(10,71,50)(11,72,51)(12,73,52)(13,74,53)(14,75,54)(15,76,55)(16,77,56)(17,78,29)(18,79,30)(19,80,31)(20,81,32)(21,82,33)(22,83,34)(23,84,35)(24,57,36)(25,58,37)(26,59,38)(27,60,39)(28,61,40)(85,133,168)(86,134,141)(87,135,142)(88,136,143)(89,137,144)(90,138,145)(91,139,146)(92,140,147)(93,113,148)(94,114,149)(95,115,150)(96,116,151)(97,117,152)(98,118,153)(99,119,154)(100,120,155)(101,121,156)(102,122,157)(103,123,158)(104,124,159)(105,125,160)(106,126,161)(107,127,162)(108,128,163)(109,129,164)(110,130,165)(111,131,166)(112,132,167), (2,14)(3,27)(4,12)(5,25)(6,10)(7,23)(9,21)(11,19)(13,17)(16,28)(18,26)(20,24)(29,74)(30,59)(31,72)(32,57)(33,70)(34,83)(35,68)(36,81)(37,66)(38,79)(39,64)(40,77)(41,62)(42,75)(43,60)(44,73)(45,58)(46,71)(47,84)(48,69)(49,82)(50,67)(51,80)(52,65)(53,78)(54,63)(55,76)(56,61)(85,131)(86,116)(87,129)(88,114)(89,127)(90,140)(91,125)(92,138)(93,123)(94,136)(95,121)(96,134)(97,119)(98,132)(99,117)(100,130)(101,115)(102,128)(103,113)(104,126)(105,139)(106,124)(107,137)(108,122)(109,135)(110,120)(111,133)(112,118)(141,151)(142,164)(143,149)(144,162)(145,147)(146,160)(148,158)(150,156)(152,154)(153,167)(155,165)(157,163)(159,161)(166,168) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,159),(2,158),(3,157),(4,156),(5,155),(6,154),(7,153),(8,152),(9,151),(10,150),(11,149),(12,148),(13,147),(14,146),(15,145),(16,144),(17,143),(18,142),(19,141),(20,168),(21,167),(22,166),(23,165),(24,164),(25,163),(26,162),(27,161),(28,160),(29,136),(30,135),(31,134),(32,133),(33,132),(34,131),(35,130),(36,129),(37,128),(38,127),(39,126),(40,125),(41,124),(42,123),(43,122),(44,121),(45,120),(46,119),(47,118),(48,117),(49,116),(50,115),(51,114),(52,113),(53,140),(54,139),(55,138),(56,137),(57,109),(58,108),(59,107),(60,106),(61,105),(62,104),(63,103),(64,102),(65,101),(66,100),(67,99),(68,98),(69,97),(70,96),(71,95),(72,94),(73,93),(74,92),(75,91),(76,90),(77,89),(78,88),(79,87),(80,86),(81,85),(82,112),(83,111),(84,110)], [(1,62,41),(2,63,42),(3,64,43),(4,65,44),(5,66,45),(6,67,46),(7,68,47),(8,69,48),(9,70,49),(10,71,50),(11,72,51),(12,73,52),(13,74,53),(14,75,54),(15,76,55),(16,77,56),(17,78,29),(18,79,30),(19,80,31),(20,81,32),(21,82,33),(22,83,34),(23,84,35),(24,57,36),(25,58,37),(26,59,38),(27,60,39),(28,61,40),(85,133,168),(86,134,141),(87,135,142),(88,136,143),(89,137,144),(90,138,145),(91,139,146),(92,140,147),(93,113,148),(94,114,149),(95,115,150),(96,116,151),(97,117,152),(98,118,153),(99,119,154),(100,120,155),(101,121,156),(102,122,157),(103,123,158),(104,124,159),(105,125,160),(106,126,161),(107,127,162),(108,128,163),(109,129,164),(110,130,165),(111,131,166),(112,132,167)], [(2,14),(3,27),(4,12),(5,25),(6,10),(7,23),(9,21),(11,19),(13,17),(16,28),(18,26),(20,24),(29,74),(30,59),(31,72),(32,57),(33,70),(34,83),(35,68),(36,81),(37,66),(38,79),(39,64),(40,77),(41,62),(42,75),(43,60),(44,73),(45,58),(46,71),(47,84),(48,69),(49,82),(50,67),(51,80),(52,65),(53,78),(54,63),(55,76),(56,61),(85,131),(86,116),(87,129),(88,114),(89,127),(90,140),(91,125),(92,138),(93,123),(94,136),(95,121),(96,134),(97,119),(98,132),(99,117),(100,130),(101,115),(102,128),(103,113),(104,126),(105,139),(106,124),(107,137),(108,122),(109,135),(110,120),(111,133),(112,118),(141,151),(142,164),(143,149),(144,162),(145,147),(146,160),(148,158),(150,156),(152,154),(153,167),(155,165),(157,163),(159,161),(166,168)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C7A7B7C 12 14A14B14C21A21B21C28A28B28C28D···28I42A42B42C84A···84F
order122223444446667771214141421212128282828···2842424284···84
size111414422266212122828222422244444412···124444···4

42 irreducible representations

dim111111222222244444
type++++++++++++-+++
imageC1C2C2C2C2C2S3D6D6D7C4○D4D14D14D42S3S3×D7Q82D7C2×S3×D7D28⋊S3
kernelD28⋊S3Dic3×D7C3⋊D28C3×D28C7×Dic6C4×D21D28C28D14Dic6C21Dic3C12C7C4C3C2C1
# reps122111112326313336

Matrix representation of D28⋊S3 in GL6(𝔽337)

33600000
03360000
0019411000
008510900
00001890
0000120148
,
33600000
03360000
0003300
00143000
00003203
000024117
,
3363360000
100000
001000
000100
000010
000001
,
100000
3363360000
00109100
0025222800
000010
0000236336

G:=sub<GL(6,GF(337))| [336,0,0,0,0,0,0,336,0,0,0,0,0,0,194,85,0,0,0,0,110,109,0,0,0,0,0,0,189,120,0,0,0,0,0,148],[336,0,0,0,0,0,0,336,0,0,0,0,0,0,0,143,0,0,0,0,33,0,0,0,0,0,0,0,320,241,0,0,0,0,3,17],[336,1,0,0,0,0,336,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,336,0,0,0,0,0,336,0,0,0,0,0,0,109,252,0,0,0,0,1,228,0,0,0,0,0,0,1,236,0,0,0,0,0,336] >;

D28⋊S3 in GAP, Magma, Sage, TeX

D_{28}\rtimes S_3
% in TeX

G:=Group("D28:S3");
// GroupNames label

G:=SmallGroup(336,139);
// by ID

G=gap.SmallGroup(336,139);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,55,218,116,50,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^13,b*c=c*b,d*b*d=a^26*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽