Copied to
clipboard

G = C4xS3xD7order 336 = 24·3·7

Direct product of C4, S3 and D7

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4xS3xD7, C28:5D6, C12:5D14, C84:5C22, Dic7:5D6, D14.9D6, D6.9D14, Dic3:5D14, C42.11C23, Dic21:5C22, D42.12C22, (S3xC28):5C2, D21:C4:6C2, (C4xD21):9C2, D21:1(C2xC4), (C12xD7):5C2, C21:1(C22xC4), (Dic3xD7):6C2, (S3xDic7):6C2, (C6xD7).9C22, C6.11(C22xD7), (S3xC14).9C22, C14.11(C22xS3), (C7xDic3):3C22, (C3xDic7):3C22, C7:1(S3xC2xC4), C3:1(C2xC4xD7), (C2xS3xD7).C2, C2.1(C2xS3xD7), (S3xC7):1(C2xC4), (C3xD7):1(C2xC4), SmallGroup(336,147)

Series: Derived Chief Lower central Upper central

C1C21 — C4xS3xD7
C1C7C21C42C6xD7C2xS3xD7 — C4xS3xD7
C21 — C4xS3xD7
C1C4

Generators and relations for C4xS3xD7
 G = < a,b,c,d,e | a4=b3=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 580 in 108 conjugacy classes, 46 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, S3, C6, C6, C7, C2xC4, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, D7, D7, C14, C14, C22xC4, C21, C4xS3, C4xS3, C2xDic3, C2xC12, C22xS3, Dic7, Dic7, C28, C28, D14, D14, C2xC14, S3xC7, C3xD7, D21, C42, S3xC2xC4, C4xD7, C4xD7, C2xDic7, C2xC28, C22xD7, C7xDic3, C3xDic7, Dic21, C84, S3xD7, C6xD7, S3xC14, D42, C2xC4xD7, Dic3xD7, S3xDic7, D21:C4, C12xD7, S3xC28, C4xD21, C2xS3xD7, C4xS3xD7
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, D7, C22xC4, C4xS3, C22xS3, D14, S3xC2xC4, C4xD7, C22xD7, S3xD7, C2xC4xD7, C2xS3xD7, C4xS3xD7

Smallest permutation representation of C4xS3xD7
On 84 points
Generators in S84
(1 69 27 48)(2 70 28 49)(3 64 22 43)(4 65 23 44)(5 66 24 45)(6 67 25 46)(7 68 26 47)(8 71 29 50)(9 72 30 51)(10 73 31 52)(11 74 32 53)(12 75 33 54)(13 76 34 55)(14 77 35 56)(15 78 36 57)(16 79 37 58)(17 80 38 59)(18 81 39 60)(19 82 40 61)(20 83 41 62)(21 84 42 63)
(1 13 20)(2 14 21)(3 8 15)(4 9 16)(5 10 17)(6 11 18)(7 12 19)(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)(43 50 57)(44 51 58)(45 52 59)(46 53 60)(47 54 61)(48 55 62)(49 56 63)(64 71 78)(65 72 79)(66 73 80)(67 74 81)(68 75 82)(69 76 83)(70 77 84)
(1 27)(2 28)(3 22)(4 23)(5 24)(6 25)(7 26)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)(49 70)(50 78)(51 79)(52 80)(53 81)(54 82)(55 83)(56 84)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)
(1 26)(2 25)(3 24)(4 23)(5 22)(6 28)(7 27)(8 31)(9 30)(10 29)(11 35)(12 34)(13 33)(14 32)(15 38)(16 37)(17 36)(18 42)(19 41)(20 40)(21 39)(43 66)(44 65)(45 64)(46 70)(47 69)(48 68)(49 67)(50 73)(51 72)(52 71)(53 77)(54 76)(55 75)(56 74)(57 80)(58 79)(59 78)(60 84)(61 83)(62 82)(63 81)

G:=sub<Sym(84)| (1,69,27,48)(2,70,28,49)(3,64,22,43)(4,65,23,44)(5,66,24,45)(6,67,25,46)(7,68,26,47)(8,71,29,50)(9,72,30,51)(10,73,31,52)(11,74,32,53)(12,75,33,54)(13,76,34,55)(14,77,35,56)(15,78,36,57)(16,79,37,58)(17,80,38,59)(18,81,39,60)(19,82,40,61)(20,83,41,62)(21,84,42,63), (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,50,57)(44,51,58)(45,52,59)(46,53,60)(47,54,61)(48,55,62)(49,56,63)(64,71,78)(65,72,79)(66,73,80)(67,74,81)(68,75,82)(69,76,83)(70,77,84), (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,78)(51,79)(52,80)(53,81)(54,82)(55,83)(56,84)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,31)(9,30)(10,29)(11,35)(12,34)(13,33)(14,32)(15,38)(16,37)(17,36)(18,42)(19,41)(20,40)(21,39)(43,66)(44,65)(45,64)(46,70)(47,69)(48,68)(49,67)(50,73)(51,72)(52,71)(53,77)(54,76)(55,75)(56,74)(57,80)(58,79)(59,78)(60,84)(61,83)(62,82)(63,81)>;

G:=Group( (1,69,27,48)(2,70,28,49)(3,64,22,43)(4,65,23,44)(5,66,24,45)(6,67,25,46)(7,68,26,47)(8,71,29,50)(9,72,30,51)(10,73,31,52)(11,74,32,53)(12,75,33,54)(13,76,34,55)(14,77,35,56)(15,78,36,57)(16,79,37,58)(17,80,38,59)(18,81,39,60)(19,82,40,61)(20,83,41,62)(21,84,42,63), (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,50,57)(44,51,58)(45,52,59)(46,53,60)(47,54,61)(48,55,62)(49,56,63)(64,71,78)(65,72,79)(66,73,80)(67,74,81)(68,75,82)(69,76,83)(70,77,84), (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,78)(51,79)(52,80)(53,81)(54,82)(55,83)(56,84)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,31)(9,30)(10,29)(11,35)(12,34)(13,33)(14,32)(15,38)(16,37)(17,36)(18,42)(19,41)(20,40)(21,39)(43,66)(44,65)(45,64)(46,70)(47,69)(48,68)(49,67)(50,73)(51,72)(52,71)(53,77)(54,76)(55,75)(56,74)(57,80)(58,79)(59,78)(60,84)(61,83)(62,82)(63,81) );

G=PermutationGroup([[(1,69,27,48),(2,70,28,49),(3,64,22,43),(4,65,23,44),(5,66,24,45),(6,67,25,46),(7,68,26,47),(8,71,29,50),(9,72,30,51),(10,73,31,52),(11,74,32,53),(12,75,33,54),(13,76,34,55),(14,77,35,56),(15,78,36,57),(16,79,37,58),(17,80,38,59),(18,81,39,60),(19,82,40,61),(20,83,41,62),(21,84,42,63)], [(1,13,20),(2,14,21),(3,8,15),(4,9,16),(5,10,17),(6,11,18),(7,12,19),(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42),(43,50,57),(44,51,58),(45,52,59),(46,53,60),(47,54,61),(48,55,62),(49,56,63),(64,71,78),(65,72,79),(66,73,80),(67,74,81),(68,75,82),(69,76,83),(70,77,84)], [(1,27),(2,28),(3,22),(4,23),(5,24),(6,25),(7,26),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69),(49,70),(50,78),(51,79),(52,80),(53,81),(54,82),(55,83),(56,84),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84)], [(1,26),(2,25),(3,24),(4,23),(5,22),(6,28),(7,27),(8,31),(9,30),(10,29),(11,35),(12,34),(13,33),(14,32),(15,38),(16,37),(17,36),(18,42),(19,41),(20,40),(21,39),(43,66),(44,65),(45,64),(46,70),(47,69),(48,68),(49,67),(50,73),(51,72),(52,71),(53,77),(54,76),(55,75),(56,74),(57,80),(58,79),(59,78),(60,84),(61,83),(62,82),(63,81)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H6A6B6C7A7B7C12A12B12C12D14A14B14C14D···14I21A21B21C28A···28F28G···28L42A42B42C84A···84F
order122222223444444446667771212121214141414···1421212128···2828···2842424284···84
size113377212121133772121214142222214142226···64442···26···64444···4

60 irreducible representations

dim1111111112222222222444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4S3D6D6D6D7C4xS3D14D14D14C4xD7S3xD7C2xS3xD7C4xS3xD7
kernelC4xS3xD7Dic3xD7S3xDic7D21:C4C12xD7S3xC28C4xD21C2xS3xD7S3xD7C4xD7Dic7C28D14C4xS3D7Dic3C12D6S3C4C2C1
# reps11111111811113433312336

Matrix representation of C4xS3xD7 in GL4(F337) generated by

189000
018900
001890
000189
,
3352800
36100
0010
0001
,
1000
30133600
003360
000336
,
1000
0100
00336305
00336304
,
336000
033600
00110260
00144227
G:=sub<GL(4,GF(337))| [189,0,0,0,0,189,0,0,0,0,189,0,0,0,0,189],[335,36,0,0,28,1,0,0,0,0,1,0,0,0,0,1],[1,301,0,0,0,336,0,0,0,0,336,0,0,0,0,336],[1,0,0,0,0,1,0,0,0,0,336,336,0,0,305,304],[336,0,0,0,0,336,0,0,0,0,110,144,0,0,260,227] >;

C4xS3xD7 in GAP, Magma, Sage, TeX

C_4\times S_3\times D_7
% in TeX

G:=Group("C4xS3xD7");
// GroupNames label

G:=SmallGroup(336,147);
// by ID

G=gap.SmallGroup(336,147);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,50,490,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<