# Extensions 1→N→G→Q→1 with N=C3×C3⋊S3 and Q=C6

Direct product G=N×Q with N=C3×C3⋊S3 and Q=C6
dρLabelID
C3⋊S3×C3×C636C3:S3xC3xC6324,173

Semidirect products G=N:Q with N=C3×C3⋊S3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3)⋊C6 = S3×C32⋊C6φ: C6/C1C6 ⊆ Out C3×C3⋊S31812+(C3xC3:S3):C6324,116
(C3×C3⋊S3)⋊2C6 = C6×C32⋊C6φ: C6/C2C3 ⊆ Out C3×C3⋊S3366(C3xC3:S3):2C6324,138
(C3×C3⋊S3)⋊3C6 = S32×C32φ: C6/C3C2 ⊆ Out C3×C3⋊S336(C3xC3:S3):3C6324,165
(C3×C3⋊S3)⋊4C6 = C3×S3×C3⋊S3φ: C6/C3C2 ⊆ Out C3×C3⋊S336(C3xC3:S3):4C6324,166
(C3×C3⋊S3)⋊5C6 = C3×C324D6φ: C6/C3C2 ⊆ Out C3×C3⋊S3124(C3xC3:S3):5C6324,167

Non-split extensions G=N.Q with N=C3×C3⋊S3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3).C6 = C2×C32⋊C18φ: C6/C2C3 ⊆ Out C3×C3⋊S3366(C3xC3:S3).C6324,62
(C3×C3⋊S3).2C6 = C9×C32⋊C4φ: C6/C3C2 ⊆ Out C3×C3⋊S3364(C3xC3:S3).2C6324,109
(C3×C3⋊S3).3C6 = S32×C9φ: C6/C3C2 ⊆ Out C3×C3⋊S3364(C3xC3:S3).3C6324,115
(C3×C3⋊S3).4C6 = C32×C32⋊C4φ: C6/C3C2 ⊆ Out C3×C3⋊S336(C3xC3:S3).4C6324,161
(C3×C3⋊S3).5C6 = C3×C33⋊C4φ: C6/C3C2 ⊆ Out C3×C3⋊S3124(C3xC3:S3).5C6324,162
(C3×C3⋊S3).6C6 = C18×C3⋊S3φ: trivial image108(C3xC3:S3).6C6324,143

׿
×
𝔽