direct product, metabelian, supersoluble, monomial, A-group
Aliases: C3×S3×C3⋊S3, C33⋊13D6, C34⋊2C22, C32⋊7S32, C33⋊7(C2×C6), C32⋊6(S3×C6), (S3×C32)⋊3S3, (S3×C32)⋊4C6, (S3×C33)⋊2C2, C33⋊C2⋊4C6, C3⋊1(C3×S32), (C3×S3)⋊(C3×S3), C3⋊1(C6×C3⋊S3), (C3×C3⋊S3)⋊4C6, C32⋊6(C2×C3⋊S3), (C32×C3⋊S3)⋊2C2, (C3×C33⋊C2)⋊1C2, SmallGroup(324,166)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C3×S3×C3⋊S3 |
Generators and relations for C3×S3×C3⋊S3
G = < a,b,c,d,e,f | a3=b3=c2=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=d-1, fef=e-1 >
Subgroups: 1000 in 224 conjugacy classes, 44 normal (20 characteristic)
C1, C2, C3, C3, C3, C22, S3, S3, C6, C32, C32, C32, D6, C2×C6, C3×S3, C3×S3, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C33, C33, C33, S32, S3×C6, C2×C3⋊S3, S3×C32, S3×C32, S3×C32, C3×C3⋊S3, C3×C3⋊S3, C33⋊C2, C32×C6, C34, C3×S32, S3×C3⋊S3, C6×C3⋊S3, S3×C33, C32×C3⋊S3, C3×C33⋊C2, C3×S3×C3⋊S3
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, C3⋊S3, S32, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C3×S32, S3×C3⋊S3, C6×C3⋊S3, C3×S3×C3⋊S3
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 12 14)(2 10 15)(3 11 13)(4 7 36)(5 8 34)(6 9 35)(16 22 19)(17 23 20)(18 24 21)(25 28 31)(26 29 32)(27 30 33)
(1 33)(2 31)(3 32)(4 21)(5 19)(6 20)(7 24)(8 22)(9 23)(10 28)(11 29)(12 30)(13 26)(14 27)(15 25)(16 34)(17 35)(18 36)
(1 13 10)(2 14 11)(3 15 12)(4 34 9)(5 35 7)(6 36 8)(16 23 21)(17 24 19)(18 22 20)(25 30 32)(26 28 33)(27 29 31)
(1 14 12)(2 15 10)(3 13 11)(4 36 7)(5 34 8)(6 35 9)(16 22 19)(17 23 20)(18 24 21)(25 28 31)(26 29 32)(27 30 33)
(1 24)(2 22)(3 23)(4 30)(5 28)(6 29)(7 33)(8 31)(9 32)(10 19)(11 20)(12 21)(13 17)(14 18)(15 16)(25 34)(26 35)(27 36)
G:=sub<Sym(36)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,12,14)(2,10,15)(3,11,13)(4,7,36)(5,8,34)(6,9,35)(16,22,19)(17,23,20)(18,24,21)(25,28,31)(26,29,32)(27,30,33), (1,33)(2,31)(3,32)(4,21)(5,19)(6,20)(7,24)(8,22)(9,23)(10,28)(11,29)(12,30)(13,26)(14,27)(15,25)(16,34)(17,35)(18,36), (1,13,10)(2,14,11)(3,15,12)(4,34,9)(5,35,7)(6,36,8)(16,23,21)(17,24,19)(18,22,20)(25,30,32)(26,28,33)(27,29,31), (1,14,12)(2,15,10)(3,13,11)(4,36,7)(5,34,8)(6,35,9)(16,22,19)(17,23,20)(18,24,21)(25,28,31)(26,29,32)(27,30,33), (1,24)(2,22)(3,23)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,19)(11,20)(12,21)(13,17)(14,18)(15,16)(25,34)(26,35)(27,36)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,12,14)(2,10,15)(3,11,13)(4,7,36)(5,8,34)(6,9,35)(16,22,19)(17,23,20)(18,24,21)(25,28,31)(26,29,32)(27,30,33), (1,33)(2,31)(3,32)(4,21)(5,19)(6,20)(7,24)(8,22)(9,23)(10,28)(11,29)(12,30)(13,26)(14,27)(15,25)(16,34)(17,35)(18,36), (1,13,10)(2,14,11)(3,15,12)(4,34,9)(5,35,7)(6,36,8)(16,23,21)(17,24,19)(18,22,20)(25,30,32)(26,28,33)(27,29,31), (1,14,12)(2,15,10)(3,13,11)(4,36,7)(5,34,8)(6,35,9)(16,22,19)(17,23,20)(18,24,21)(25,28,31)(26,29,32)(27,30,33), (1,24)(2,22)(3,23)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,19)(11,20)(12,21)(13,17)(14,18)(15,16)(25,34)(26,35)(27,36) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,12,14),(2,10,15),(3,11,13),(4,7,36),(5,8,34),(6,9,35),(16,22,19),(17,23,20),(18,24,21),(25,28,31),(26,29,32),(27,30,33)], [(1,33),(2,31),(3,32),(4,21),(5,19),(6,20),(7,24),(8,22),(9,23),(10,28),(11,29),(12,30),(13,26),(14,27),(15,25),(16,34),(17,35),(18,36)], [(1,13,10),(2,14,11),(3,15,12),(4,34,9),(5,35,7),(6,36,8),(16,23,21),(17,24,19),(18,22,20),(25,30,32),(26,28,33),(27,29,31)], [(1,14,12),(2,15,10),(3,13,11),(4,36,7),(5,34,8),(6,35,9),(16,22,19),(17,23,20),(18,24,21),(25,28,31),(26,29,32),(27,30,33)], [(1,24),(2,22),(3,23),(4,30),(5,28),(6,29),(7,33),(8,31),(9,32),(10,19),(11,20),(12,21),(13,17),(14,18),(15,16),(25,34),(26,35),(27,36)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3Q | 3R | ··· | 3AC | 6A | 6B | 6C | ··· | 6N | 6O | 6P | 6Q | 6R | 6S | 6T | 6U |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
size | 1 | 3 | 9 | 27 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 3 | 3 | 6 | ··· | 6 | 9 | 9 | 18 | 18 | 18 | 27 | 27 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | S3 | D6 | C3×S3 | C3×S3 | S3×C6 | S32 | C3×S32 |
kernel | C3×S3×C3⋊S3 | S3×C33 | C32×C3⋊S3 | C3×C33⋊C2 | S3×C3⋊S3 | S3×C32 | C3×C3⋊S3 | C33⋊C2 | S3×C32 | C3×C3⋊S3 | C33 | C3×S3 | C3⋊S3 | C32 | C32 | C3 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 5 | 8 | 2 | 10 | 4 | 8 |
Matrix representation of C3×S3×C3⋊S3 ►in GL6(𝔽7)
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 6 | 6 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
6 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(7))| [2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,0,0,0,0,1,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,6,0,0,0,0,1,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C3×S3×C3⋊S3 in GAP, Magma, Sage, TeX
C_3\times S_3\times C_3\rtimes S_3
% in TeX
G:=Group("C3xS3xC3:S3");
// GroupNames label
G:=SmallGroup(324,166);
// by ID
G=gap.SmallGroup(324,166);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,297,1090,7781]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations