Extensions 1→N→G→Q→1 with N=C7⋊C8 and Q=S3

Direct product G=N×Q with N=C7⋊C8 and Q=S3
dρLabelID
S3×C7⋊C81684S3xC7:C8336,24

Semidirect products G=N:Q with N=C7⋊C8 and Q=S3
extensionφ:Q→Out NdρLabelID
C7⋊C81S3 = C7⋊D24φ: S3/C3C2 ⊆ Out C7⋊C81684+C7:C8:1S3336,31
C7⋊C82S3 = D12.D7φ: S3/C3C2 ⊆ Out C7⋊C81684-C7:C8:2S3336,36
C7⋊C83S3 = Dic6⋊D7φ: S3/C3C2 ⊆ Out C7⋊C81684+C7:C8:3S3336,37
C7⋊C84S3 = D6.Dic7φ: S3/C3C2 ⊆ Out C7⋊C81684C7:C8:4S3336,27
C7⋊C85S3 = D42.C4φ: S3/C3C2 ⊆ Out C7⋊C81684C7:C8:5S3336,28
C7⋊C86S3 = D21⋊C8φ: trivial image1684C7:C8:6S3336,25

Non-split extensions G=N.Q with N=C7⋊C8 and Q=S3
extensionφ:Q→Out NdρLabelID
C7⋊C8.S3 = C7⋊Dic12φ: S3/C3C2 ⊆ Out C7⋊C83364-C7:C8.S3336,40

׿
×
𝔽