metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C7⋊2D24, C21⋊3D8, D12⋊1D7, D84⋊8C2, C28.2D6, C42.3D4, C14.6D12, C12.22D14, C84.15C22, C7⋊C8⋊1S3, C3⋊1(D4⋊D7), C4.8(S3×D7), (C7×D12)⋊1C2, C6.1(C7⋊D4), C2.4(C7⋊D12), (C3×C7⋊C8)⋊1C2, SmallGroup(336,31)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7⋊D24
G = < a,b,c | a7=b24=c2=1, bab-1=cac=a-1, cbc=b-1 >
(1 37 56 92 108 148 133)(2 134 149 109 93 57 38)(3 39 58 94 110 150 135)(4 136 151 111 95 59 40)(5 41 60 96 112 152 137)(6 138 153 113 73 61 42)(7 43 62 74 114 154 139)(8 140 155 115 75 63 44)(9 45 64 76 116 156 141)(10 142 157 117 77 65 46)(11 47 66 78 118 158 143)(12 144 159 119 79 67 48)(13 25 68 80 120 160 121)(14 122 161 97 81 69 26)(15 27 70 82 98 162 123)(16 124 163 99 83 71 28)(17 29 72 84 100 164 125)(18 126 165 101 85 49 30)(19 31 50 86 102 166 127)(20 128 167 103 87 51 32)(21 33 52 88 104 168 129)(22 130 145 105 89 53 34)(23 35 54 90 106 146 131)(24 132 147 107 91 55 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 9)(2 8)(3 7)(4 6)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(25 129)(26 128)(27 127)(28 126)(29 125)(30 124)(31 123)(32 122)(33 121)(34 144)(35 143)(36 142)(37 141)(38 140)(39 139)(40 138)(41 137)(42 136)(43 135)(44 134)(45 133)(46 132)(47 131)(48 130)(49 163)(50 162)(51 161)(52 160)(53 159)(54 158)(55 157)(56 156)(57 155)(58 154)(59 153)(60 152)(61 151)(62 150)(63 149)(64 148)(65 147)(66 146)(67 145)(68 168)(69 167)(70 166)(71 165)(72 164)(73 111)(74 110)(75 109)(76 108)(77 107)(78 106)(79 105)(80 104)(81 103)(82 102)(83 101)(84 100)(85 99)(86 98)(87 97)(88 120)(89 119)(90 118)(91 117)(92 116)(93 115)(94 114)(95 113)(96 112)
G:=sub<Sym(168)| (1,37,56,92,108,148,133)(2,134,149,109,93,57,38)(3,39,58,94,110,150,135)(4,136,151,111,95,59,40)(5,41,60,96,112,152,137)(6,138,153,113,73,61,42)(7,43,62,74,114,154,139)(8,140,155,115,75,63,44)(9,45,64,76,116,156,141)(10,142,157,117,77,65,46)(11,47,66,78,118,158,143)(12,144,159,119,79,67,48)(13,25,68,80,120,160,121)(14,122,161,97,81,69,26)(15,27,70,82,98,162,123)(16,124,163,99,83,71,28)(17,29,72,84,100,164,125)(18,126,165,101,85,49,30)(19,31,50,86,102,166,127)(20,128,167,103,87,51,32)(21,33,52,88,104,168,129)(22,130,145,105,89,53,34)(23,35,54,90,106,146,131)(24,132,147,107,91,55,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,9)(2,8)(3,7)(4,6)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,144)(35,143)(36,142)(37,141)(38,140)(39,139)(40,138)(41,137)(42,136)(43,135)(44,134)(45,133)(46,132)(47,131)(48,130)(49,163)(50,162)(51,161)(52,160)(53,159)(54,158)(55,157)(56,156)(57,155)(58,154)(59,153)(60,152)(61,151)(62,150)(63,149)(64,148)(65,147)(66,146)(67,145)(68,168)(69,167)(70,166)(71,165)(72,164)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,120)(89,119)(90,118)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112)>;
G:=Group( (1,37,56,92,108,148,133)(2,134,149,109,93,57,38)(3,39,58,94,110,150,135)(4,136,151,111,95,59,40)(5,41,60,96,112,152,137)(6,138,153,113,73,61,42)(7,43,62,74,114,154,139)(8,140,155,115,75,63,44)(9,45,64,76,116,156,141)(10,142,157,117,77,65,46)(11,47,66,78,118,158,143)(12,144,159,119,79,67,48)(13,25,68,80,120,160,121)(14,122,161,97,81,69,26)(15,27,70,82,98,162,123)(16,124,163,99,83,71,28)(17,29,72,84,100,164,125)(18,126,165,101,85,49,30)(19,31,50,86,102,166,127)(20,128,167,103,87,51,32)(21,33,52,88,104,168,129)(22,130,145,105,89,53,34)(23,35,54,90,106,146,131)(24,132,147,107,91,55,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,9)(2,8)(3,7)(4,6)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,144)(35,143)(36,142)(37,141)(38,140)(39,139)(40,138)(41,137)(42,136)(43,135)(44,134)(45,133)(46,132)(47,131)(48,130)(49,163)(50,162)(51,161)(52,160)(53,159)(54,158)(55,157)(56,156)(57,155)(58,154)(59,153)(60,152)(61,151)(62,150)(63,149)(64,148)(65,147)(66,146)(67,145)(68,168)(69,167)(70,166)(71,165)(72,164)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,120)(89,119)(90,118)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112) );
G=PermutationGroup([[(1,37,56,92,108,148,133),(2,134,149,109,93,57,38),(3,39,58,94,110,150,135),(4,136,151,111,95,59,40),(5,41,60,96,112,152,137),(6,138,153,113,73,61,42),(7,43,62,74,114,154,139),(8,140,155,115,75,63,44),(9,45,64,76,116,156,141),(10,142,157,117,77,65,46),(11,47,66,78,118,158,143),(12,144,159,119,79,67,48),(13,25,68,80,120,160,121),(14,122,161,97,81,69,26),(15,27,70,82,98,162,123),(16,124,163,99,83,71,28),(17,29,72,84,100,164,125),(18,126,165,101,85,49,30),(19,31,50,86,102,166,127),(20,128,167,103,87,51,32),(21,33,52,88,104,168,129),(22,130,145,105,89,53,34),(23,35,54,90,106,146,131),(24,132,147,107,91,55,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,9),(2,8),(3,7),(4,6),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(25,129),(26,128),(27,127),(28,126),(29,125),(30,124),(31,123),(32,122),(33,121),(34,144),(35,143),(36,142),(37,141),(38,140),(39,139),(40,138),(41,137),(42,136),(43,135),(44,134),(45,133),(46,132),(47,131),(48,130),(49,163),(50,162),(51,161),(52,160),(53,159),(54,158),(55,157),(56,156),(57,155),(58,154),(59,153),(60,152),(61,151),(62,150),(63,149),(64,148),(65,147),(66,146),(67,145),(68,168),(69,167),(70,166),(71,165),(72,164),(73,111),(74,110),(75,109),(76,108),(77,107),(78,106),(79,105),(80,104),(81,103),(82,102),(83,101),(84,100),(85,99),(86,98),(87,97),(88,120),(89,119),(90,118),(91,117),(92,116),(93,115),(94,114),(95,113),(96,112)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 6 | 7A | 7B | 7C | 8A | 8B | 12A | 12B | 14A | 14B | 14C | 14D | ··· | 14I | 21A | 21B | 21C | 24A | 24B | 24C | 24D | 28A | 28B | 28C | 42A | 42B | 42C | 84A | ··· | 84F |
order | 1 | 2 | 2 | 2 | 3 | 4 | 6 | 7 | 7 | 7 | 8 | 8 | 12 | 12 | 14 | 14 | 14 | 14 | ··· | 14 | 21 | 21 | 21 | 24 | 24 | 24 | 24 | 28 | 28 | 28 | 42 | 42 | 42 | 84 | ··· | 84 |
size | 1 | 1 | 12 | 84 | 2 | 2 | 2 | 2 | 2 | 2 | 14 | 14 | 2 | 2 | 2 | 2 | 2 | 12 | ··· | 12 | 4 | 4 | 4 | 14 | 14 | 14 | 14 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | S3 | D4 | D6 | D7 | D8 | D12 | D14 | D24 | C7⋊D4 | S3×D7 | D4⋊D7 | C7⋊D12 | C7⋊D24 |
kernel | C7⋊D24 | C3×C7⋊C8 | C7×D12 | D84 | C7⋊C8 | C42 | C28 | D12 | C21 | C14 | C12 | C7 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 4 | 6 | 3 | 3 | 3 | 6 |
Matrix representation of C7⋊D24 ►in GL4(𝔽337) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 336 | 227 |
76 | 263 | 0 | 0 |
242 | 26 | 0 | 0 |
0 | 0 | 45 | 292 |
0 | 0 | 60 | 292 |
1 | 36 | 0 | 0 |
0 | 336 | 0 | 0 |
0 | 0 | 33 | 33 |
0 | 0 | 110 | 304 |
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,0,336,0,0,1,227],[76,242,0,0,263,26,0,0,0,0,45,60,0,0,292,292],[1,0,0,0,36,336,0,0,0,0,33,110,0,0,33,304] >;
C7⋊D24 in GAP, Magma, Sage, TeX
C_7\rtimes D_{24}
% in TeX
G:=Group("C7:D24");
// GroupNames label
G:=SmallGroup(336,31);
// by ID
G=gap.SmallGroup(336,31);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-7,24,73,116,50,490,10373]);
// Polycyclic
G:=Group<a,b,c|a^7=b^24=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export