Copied to
clipboard

G = C7⋊D24order 336 = 24·3·7

The semidirect product of C7 and D24 acting via D24/D12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C72D24, C213D8, D121D7, D848C2, C28.2D6, C42.3D4, C14.6D12, C12.22D14, C84.15C22, C7⋊C81S3, C31(D4⋊D7), C4.8(S3×D7), (C7×D12)⋊1C2, C6.1(C7⋊D4), C2.4(C7⋊D12), (C3×C7⋊C8)⋊1C2, SmallGroup(336,31)

Series: Derived Chief Lower central Upper central

C1C84 — C7⋊D24
C1C7C21C42C84C3×C7⋊C8 — C7⋊D24
C21C42C84 — C7⋊D24
C1C2C4

Generators and relations for C7⋊D24
 G = < a,b,c | a7=b24=c2=1, bab-1=cac=a-1, cbc=b-1 >

12C2
84C2
6C22
42C22
4S3
28S3
12D7
12C14
3D4
7C8
21D4
2D6
14D6
6C2×C14
6D14
4D21
4S3×C7
21D8
7D12
7C24
3C7×D4
3D28
2D42
2S3×C14
7D24
3D4⋊D7

Smallest permutation representation of C7⋊D24
On 168 points
Generators in S168
(1 37 56 92 108 148 133)(2 134 149 109 93 57 38)(3 39 58 94 110 150 135)(4 136 151 111 95 59 40)(5 41 60 96 112 152 137)(6 138 153 113 73 61 42)(7 43 62 74 114 154 139)(8 140 155 115 75 63 44)(9 45 64 76 116 156 141)(10 142 157 117 77 65 46)(11 47 66 78 118 158 143)(12 144 159 119 79 67 48)(13 25 68 80 120 160 121)(14 122 161 97 81 69 26)(15 27 70 82 98 162 123)(16 124 163 99 83 71 28)(17 29 72 84 100 164 125)(18 126 165 101 85 49 30)(19 31 50 86 102 166 127)(20 128 167 103 87 51 32)(21 33 52 88 104 168 129)(22 130 145 105 89 53 34)(23 35 54 90 106 146 131)(24 132 147 107 91 55 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 9)(2 8)(3 7)(4 6)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(25 129)(26 128)(27 127)(28 126)(29 125)(30 124)(31 123)(32 122)(33 121)(34 144)(35 143)(36 142)(37 141)(38 140)(39 139)(40 138)(41 137)(42 136)(43 135)(44 134)(45 133)(46 132)(47 131)(48 130)(49 163)(50 162)(51 161)(52 160)(53 159)(54 158)(55 157)(56 156)(57 155)(58 154)(59 153)(60 152)(61 151)(62 150)(63 149)(64 148)(65 147)(66 146)(67 145)(68 168)(69 167)(70 166)(71 165)(72 164)(73 111)(74 110)(75 109)(76 108)(77 107)(78 106)(79 105)(80 104)(81 103)(82 102)(83 101)(84 100)(85 99)(86 98)(87 97)(88 120)(89 119)(90 118)(91 117)(92 116)(93 115)(94 114)(95 113)(96 112)

G:=sub<Sym(168)| (1,37,56,92,108,148,133)(2,134,149,109,93,57,38)(3,39,58,94,110,150,135)(4,136,151,111,95,59,40)(5,41,60,96,112,152,137)(6,138,153,113,73,61,42)(7,43,62,74,114,154,139)(8,140,155,115,75,63,44)(9,45,64,76,116,156,141)(10,142,157,117,77,65,46)(11,47,66,78,118,158,143)(12,144,159,119,79,67,48)(13,25,68,80,120,160,121)(14,122,161,97,81,69,26)(15,27,70,82,98,162,123)(16,124,163,99,83,71,28)(17,29,72,84,100,164,125)(18,126,165,101,85,49,30)(19,31,50,86,102,166,127)(20,128,167,103,87,51,32)(21,33,52,88,104,168,129)(22,130,145,105,89,53,34)(23,35,54,90,106,146,131)(24,132,147,107,91,55,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,9)(2,8)(3,7)(4,6)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,144)(35,143)(36,142)(37,141)(38,140)(39,139)(40,138)(41,137)(42,136)(43,135)(44,134)(45,133)(46,132)(47,131)(48,130)(49,163)(50,162)(51,161)(52,160)(53,159)(54,158)(55,157)(56,156)(57,155)(58,154)(59,153)(60,152)(61,151)(62,150)(63,149)(64,148)(65,147)(66,146)(67,145)(68,168)(69,167)(70,166)(71,165)(72,164)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,120)(89,119)(90,118)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112)>;

G:=Group( (1,37,56,92,108,148,133)(2,134,149,109,93,57,38)(3,39,58,94,110,150,135)(4,136,151,111,95,59,40)(5,41,60,96,112,152,137)(6,138,153,113,73,61,42)(7,43,62,74,114,154,139)(8,140,155,115,75,63,44)(9,45,64,76,116,156,141)(10,142,157,117,77,65,46)(11,47,66,78,118,158,143)(12,144,159,119,79,67,48)(13,25,68,80,120,160,121)(14,122,161,97,81,69,26)(15,27,70,82,98,162,123)(16,124,163,99,83,71,28)(17,29,72,84,100,164,125)(18,126,165,101,85,49,30)(19,31,50,86,102,166,127)(20,128,167,103,87,51,32)(21,33,52,88,104,168,129)(22,130,145,105,89,53,34)(23,35,54,90,106,146,131)(24,132,147,107,91,55,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,9)(2,8)(3,7)(4,6)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,144)(35,143)(36,142)(37,141)(38,140)(39,139)(40,138)(41,137)(42,136)(43,135)(44,134)(45,133)(46,132)(47,131)(48,130)(49,163)(50,162)(51,161)(52,160)(53,159)(54,158)(55,157)(56,156)(57,155)(58,154)(59,153)(60,152)(61,151)(62,150)(63,149)(64,148)(65,147)(66,146)(67,145)(68,168)(69,167)(70,166)(71,165)(72,164)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,120)(89,119)(90,118)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112) );

G=PermutationGroup([[(1,37,56,92,108,148,133),(2,134,149,109,93,57,38),(3,39,58,94,110,150,135),(4,136,151,111,95,59,40),(5,41,60,96,112,152,137),(6,138,153,113,73,61,42),(7,43,62,74,114,154,139),(8,140,155,115,75,63,44),(9,45,64,76,116,156,141),(10,142,157,117,77,65,46),(11,47,66,78,118,158,143),(12,144,159,119,79,67,48),(13,25,68,80,120,160,121),(14,122,161,97,81,69,26),(15,27,70,82,98,162,123),(16,124,163,99,83,71,28),(17,29,72,84,100,164,125),(18,126,165,101,85,49,30),(19,31,50,86,102,166,127),(20,128,167,103,87,51,32),(21,33,52,88,104,168,129),(22,130,145,105,89,53,34),(23,35,54,90,106,146,131),(24,132,147,107,91,55,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,9),(2,8),(3,7),(4,6),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(25,129),(26,128),(27,127),(28,126),(29,125),(30,124),(31,123),(32,122),(33,121),(34,144),(35,143),(36,142),(37,141),(38,140),(39,139),(40,138),(41,137),(42,136),(43,135),(44,134),(45,133),(46,132),(47,131),(48,130),(49,163),(50,162),(51,161),(52,160),(53,159),(54,158),(55,157),(56,156),(57,155),(58,154),(59,153),(60,152),(61,151),(62,150),(63,149),(64,148),(65,147),(66,146),(67,145),(68,168),(69,167),(70,166),(71,165),(72,164),(73,111),(74,110),(75,109),(76,108),(77,107),(78,106),(79,105),(80,104),(81,103),(82,102),(83,101),(84,100),(85,99),(86,98),(87,97),(88,120),(89,119),(90,118),(91,117),(92,116),(93,115),(94,114),(95,113),(96,112)]])

42 conjugacy classes

class 1 2A2B2C 3  4  6 7A7B7C8A8B12A12B14A14B14C14D···14I21A21B21C24A24B24C24D28A28B28C42A42B42C84A···84F
order122234677788121214141414···142121212424242428282842424284···84
size11128422222214142222212···12444141414144444444···4

42 irreducible representations

dim11112222222224444
type++++++++++++++++
imageC1C2C2C2S3D4D6D7D8D12D14D24C7⋊D4S3×D7D4⋊D7C7⋊D12C7⋊D24
kernelC7⋊D24C3×C7⋊C8C7×D12D84C7⋊C8C42C28D12C21C14C12C7C6C4C3C2C1
# reps11111113223463336

Matrix representation of C7⋊D24 in GL4(𝔽337) generated by

1000
0100
0001
00336227
,
7626300
2422600
0045292
0060292
,
13600
033600
003333
00110304
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,0,336,0,0,1,227],[76,242,0,0,263,26,0,0,0,0,45,60,0,0,292,292],[1,0,0,0,36,336,0,0,0,0,33,110,0,0,33,304] >;

C7⋊D24 in GAP, Magma, Sage, TeX

C_7\rtimes D_{24}
% in TeX

G:=Group("C7:D24");
// GroupNames label

G:=SmallGroup(336,31);
// by ID

G=gap.SmallGroup(336,31);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,24,73,116,50,490,10373]);
// Polycyclic

G:=Group<a,b,c|a^7=b^24=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7⋊D24 in TeX

׿
×
𝔽