Copied to
clipboard

G = Dic6⋊D7order 336 = 24·3·7

1st semidirect product of Dic6 and D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.6D6, C42.9D4, C216SD16, Dic61D7, D84.4C2, C14.8D12, C12.24D14, C84.17C22, C7⋊C83S3, C31(Q8⋊D7), C72(C24⋊C2), C4.10(S3×D7), (C7×Dic6)⋊1C2, C6.3(C7⋊D4), C2.6(C7⋊D12), (C3×C7⋊C8)⋊3C2, SmallGroup(336,37)

Series: Derived Chief Lower central Upper central

C1C84 — Dic6⋊D7
C1C7C21C42C84C3×C7⋊C8 — Dic6⋊D7
C21C42C84 — Dic6⋊D7
C1C2C4

Generators and relations for Dic6⋊D7
 G = < a,b,c,d | a12=c7=d2=1, b2=a6, bab-1=dad=a-1, ac=ca, bc=cb, dbd=a3b, dcd=c-1 >

84C2
6C4
42C22
28S3
12D7
3Q8
7C8
21D4
2Dic3
14D6
6D14
6C28
4D21
21SD16
7C24
7D12
3D28
3C7×Q8
2C7×Dic3
2D42
7C24⋊C2
3Q8⋊D7

Smallest permutation representation of Dic6⋊D7
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)
(1 154 7 148)(2 153 8 147)(3 152 9 146)(4 151 10 145)(5 150 11 156)(6 149 12 155)(13 51 19 57)(14 50 20 56)(15 49 21 55)(16 60 22 54)(17 59 23 53)(18 58 24 52)(25 161 31 167)(26 160 32 166)(27 159 33 165)(28 158 34 164)(29 157 35 163)(30 168 36 162)(37 104 43 98)(38 103 44 97)(39 102 45 108)(40 101 46 107)(41 100 47 106)(42 99 48 105)(61 133 67 139)(62 144 68 138)(63 143 69 137)(64 142 70 136)(65 141 71 135)(66 140 72 134)(73 86 79 92)(74 85 80 91)(75 96 81 90)(76 95 82 89)(77 94 83 88)(78 93 84 87)(109 129 115 123)(110 128 116 122)(111 127 117 121)(112 126 118 132)(113 125 119 131)(114 124 120 130)
(1 19 30 106 75 66 126)(2 20 31 107 76 67 127)(3 21 32 108 77 68 128)(4 22 33 97 78 69 129)(5 23 34 98 79 70 130)(6 24 35 99 80 71 131)(7 13 36 100 81 72 132)(8 14 25 101 82 61 121)(9 15 26 102 83 62 122)(10 16 27 103 84 63 123)(11 17 28 104 73 64 124)(12 18 29 105 74 65 125)(37 92 136 114 150 53 164)(38 93 137 115 151 54 165)(39 94 138 116 152 55 166)(40 95 139 117 153 56 167)(41 96 140 118 154 57 168)(42 85 141 119 155 58 157)(43 86 142 120 156 59 158)(44 87 143 109 145 60 159)(45 88 144 110 146 49 160)(46 89 133 111 147 50 161)(47 90 134 112 148 51 162)(48 91 135 113 149 52 163)
(1 126)(2 125)(3 124)(4 123)(5 122)(6 121)(7 132)(8 131)(9 130)(10 129)(11 128)(12 127)(13 72)(14 71)(15 70)(16 69)(17 68)(18 67)(19 66)(20 65)(21 64)(22 63)(23 62)(24 61)(25 80)(26 79)(27 78)(28 77)(29 76)(30 75)(31 74)(32 73)(33 84)(34 83)(35 82)(36 81)(37 42)(38 41)(39 40)(43 48)(44 47)(45 46)(49 133)(50 144)(51 143)(52 142)(53 141)(54 140)(55 139)(56 138)(57 137)(58 136)(59 135)(60 134)(85 164)(86 163)(87 162)(88 161)(89 160)(90 159)(91 158)(92 157)(93 168)(94 167)(95 166)(96 165)(97 103)(98 102)(99 101)(104 108)(105 107)(109 148)(110 147)(111 146)(112 145)(113 156)(114 155)(115 154)(116 153)(117 152)(118 151)(119 150)(120 149)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168), (1,154,7,148)(2,153,8,147)(3,152,9,146)(4,151,10,145)(5,150,11,156)(6,149,12,155)(13,51,19,57)(14,50,20,56)(15,49,21,55)(16,60,22,54)(17,59,23,53)(18,58,24,52)(25,161,31,167)(26,160,32,166)(27,159,33,165)(28,158,34,164)(29,157,35,163)(30,168,36,162)(37,104,43,98)(38,103,44,97)(39,102,45,108)(40,101,46,107)(41,100,47,106)(42,99,48,105)(61,133,67,139)(62,144,68,138)(63,143,69,137)(64,142,70,136)(65,141,71,135)(66,140,72,134)(73,86,79,92)(74,85,80,91)(75,96,81,90)(76,95,82,89)(77,94,83,88)(78,93,84,87)(109,129,115,123)(110,128,116,122)(111,127,117,121)(112,126,118,132)(113,125,119,131)(114,124,120,130), (1,19,30,106,75,66,126)(2,20,31,107,76,67,127)(3,21,32,108,77,68,128)(4,22,33,97,78,69,129)(5,23,34,98,79,70,130)(6,24,35,99,80,71,131)(7,13,36,100,81,72,132)(8,14,25,101,82,61,121)(9,15,26,102,83,62,122)(10,16,27,103,84,63,123)(11,17,28,104,73,64,124)(12,18,29,105,74,65,125)(37,92,136,114,150,53,164)(38,93,137,115,151,54,165)(39,94,138,116,152,55,166)(40,95,139,117,153,56,167)(41,96,140,118,154,57,168)(42,85,141,119,155,58,157)(43,86,142,120,156,59,158)(44,87,143,109,145,60,159)(45,88,144,110,146,49,160)(46,89,133,111,147,50,161)(47,90,134,112,148,51,162)(48,91,135,113,149,52,163), (1,126)(2,125)(3,124)(4,123)(5,122)(6,121)(7,132)(8,131)(9,130)(10,129)(11,128)(12,127)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,74)(32,73)(33,84)(34,83)(35,82)(36,81)(37,42)(38,41)(39,40)(43,48)(44,47)(45,46)(49,133)(50,144)(51,143)(52,142)(53,141)(54,140)(55,139)(56,138)(57,137)(58,136)(59,135)(60,134)(85,164)(86,163)(87,162)(88,161)(89,160)(90,159)(91,158)(92,157)(93,168)(94,167)(95,166)(96,165)(97,103)(98,102)(99,101)(104,108)(105,107)(109,148)(110,147)(111,146)(112,145)(113,156)(114,155)(115,154)(116,153)(117,152)(118,151)(119,150)(120,149)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168), (1,154,7,148)(2,153,8,147)(3,152,9,146)(4,151,10,145)(5,150,11,156)(6,149,12,155)(13,51,19,57)(14,50,20,56)(15,49,21,55)(16,60,22,54)(17,59,23,53)(18,58,24,52)(25,161,31,167)(26,160,32,166)(27,159,33,165)(28,158,34,164)(29,157,35,163)(30,168,36,162)(37,104,43,98)(38,103,44,97)(39,102,45,108)(40,101,46,107)(41,100,47,106)(42,99,48,105)(61,133,67,139)(62,144,68,138)(63,143,69,137)(64,142,70,136)(65,141,71,135)(66,140,72,134)(73,86,79,92)(74,85,80,91)(75,96,81,90)(76,95,82,89)(77,94,83,88)(78,93,84,87)(109,129,115,123)(110,128,116,122)(111,127,117,121)(112,126,118,132)(113,125,119,131)(114,124,120,130), (1,19,30,106,75,66,126)(2,20,31,107,76,67,127)(3,21,32,108,77,68,128)(4,22,33,97,78,69,129)(5,23,34,98,79,70,130)(6,24,35,99,80,71,131)(7,13,36,100,81,72,132)(8,14,25,101,82,61,121)(9,15,26,102,83,62,122)(10,16,27,103,84,63,123)(11,17,28,104,73,64,124)(12,18,29,105,74,65,125)(37,92,136,114,150,53,164)(38,93,137,115,151,54,165)(39,94,138,116,152,55,166)(40,95,139,117,153,56,167)(41,96,140,118,154,57,168)(42,85,141,119,155,58,157)(43,86,142,120,156,59,158)(44,87,143,109,145,60,159)(45,88,144,110,146,49,160)(46,89,133,111,147,50,161)(47,90,134,112,148,51,162)(48,91,135,113,149,52,163), (1,126)(2,125)(3,124)(4,123)(5,122)(6,121)(7,132)(8,131)(9,130)(10,129)(11,128)(12,127)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,74)(32,73)(33,84)(34,83)(35,82)(36,81)(37,42)(38,41)(39,40)(43,48)(44,47)(45,46)(49,133)(50,144)(51,143)(52,142)(53,141)(54,140)(55,139)(56,138)(57,137)(58,136)(59,135)(60,134)(85,164)(86,163)(87,162)(88,161)(89,160)(90,159)(91,158)(92,157)(93,168)(94,167)(95,166)(96,165)(97,103)(98,102)(99,101)(104,108)(105,107)(109,148)(110,147)(111,146)(112,145)(113,156)(114,155)(115,154)(116,153)(117,152)(118,151)(119,150)(120,149) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168)], [(1,154,7,148),(2,153,8,147),(3,152,9,146),(4,151,10,145),(5,150,11,156),(6,149,12,155),(13,51,19,57),(14,50,20,56),(15,49,21,55),(16,60,22,54),(17,59,23,53),(18,58,24,52),(25,161,31,167),(26,160,32,166),(27,159,33,165),(28,158,34,164),(29,157,35,163),(30,168,36,162),(37,104,43,98),(38,103,44,97),(39,102,45,108),(40,101,46,107),(41,100,47,106),(42,99,48,105),(61,133,67,139),(62,144,68,138),(63,143,69,137),(64,142,70,136),(65,141,71,135),(66,140,72,134),(73,86,79,92),(74,85,80,91),(75,96,81,90),(76,95,82,89),(77,94,83,88),(78,93,84,87),(109,129,115,123),(110,128,116,122),(111,127,117,121),(112,126,118,132),(113,125,119,131),(114,124,120,130)], [(1,19,30,106,75,66,126),(2,20,31,107,76,67,127),(3,21,32,108,77,68,128),(4,22,33,97,78,69,129),(5,23,34,98,79,70,130),(6,24,35,99,80,71,131),(7,13,36,100,81,72,132),(8,14,25,101,82,61,121),(9,15,26,102,83,62,122),(10,16,27,103,84,63,123),(11,17,28,104,73,64,124),(12,18,29,105,74,65,125),(37,92,136,114,150,53,164),(38,93,137,115,151,54,165),(39,94,138,116,152,55,166),(40,95,139,117,153,56,167),(41,96,140,118,154,57,168),(42,85,141,119,155,58,157),(43,86,142,120,156,59,158),(44,87,143,109,145,60,159),(45,88,144,110,146,49,160),(46,89,133,111,147,50,161),(47,90,134,112,148,51,162),(48,91,135,113,149,52,163)], [(1,126),(2,125),(3,124),(4,123),(5,122),(6,121),(7,132),(8,131),(9,130),(10,129),(11,128),(12,127),(13,72),(14,71),(15,70),(16,69),(17,68),(18,67),(19,66),(20,65),(21,64),(22,63),(23,62),(24,61),(25,80),(26,79),(27,78),(28,77),(29,76),(30,75),(31,74),(32,73),(33,84),(34,83),(35,82),(36,81),(37,42),(38,41),(39,40),(43,48),(44,47),(45,46),(49,133),(50,144),(51,143),(52,142),(53,141),(54,140),(55,139),(56,138),(57,137),(58,136),(59,135),(60,134),(85,164),(86,163),(87,162),(88,161),(89,160),(90,159),(91,158),(92,157),(93,168),(94,167),(95,166),(96,165),(97,103),(98,102),(99,101),(104,108),(105,107),(109,148),(110,147),(111,146),(112,145),(113,156),(114,155),(115,154),(116,153),(117,152),(118,151),(119,150),(120,149)]])

42 conjugacy classes

class 1 2A2B 3 4A4B 6 7A7B7C8A8B12A12B14A14B14C21A21B21C24A24B24C24D28A28B28C28D···28I42A42B42C84A···84F
order12234467778812121414142121212424242428282828···2842424284···84
size1184221222221414222224441414141444412···124444···4

42 irreducible representations

dim11112222222224444
type++++++++++++++
imageC1C2C2C2S3D4D6D7SD16D12D14C24⋊C2C7⋊D4S3×D7Q8⋊D7C7⋊D12Dic6⋊D7
kernelDic6⋊D7C3×C7⋊C8C7×Dic6D84C7⋊C8C42C28Dic6C21C14C12C7C6C4C3C2C1
# reps11111113223463336

Matrix representation of Dic6⋊D7 in GL4(𝔽337) generated by

32232200
1530700
003360
000336
,
11731300
9322000
009563
00274242
,
1000
0100
0001
00336227
,
133600
033600
0001
0010
G:=sub<GL(4,GF(337))| [322,15,0,0,322,307,0,0,0,0,336,0,0,0,0,336],[117,93,0,0,313,220,0,0,0,0,95,274,0,0,63,242],[1,0,0,0,0,1,0,0,0,0,0,336,0,0,1,227],[1,0,0,0,336,336,0,0,0,0,0,1,0,0,1,0] >;

Dic6⋊D7 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes D_7
% in TeX

G:=Group("Dic6:D7");
// GroupNames label

G:=SmallGroup(336,37);
// by ID

G=gap.SmallGroup(336,37);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,24,169,55,116,50,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^7=d^2=1,b^2=a^6,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of Dic6⋊D7 in TeX

׿
×
𝔽