Extensions 1→N→G→Q→1 with N=C3 and Q=C6×D9

Direct product G=N×Q with N=C3 and Q=C6×D9
dρLabelID
D9×C3×C6108D9xC3xC6324,136

Semidirect products G=N:Q with N=C3 and Q=C6×D9
extensionφ:Q→Aut NdρLabelID
C31(C6×D9) = C3×S3×D9φ: C6×D9/C3×D9C2 ⊆ Aut C3364C3:1(C6xD9)324,114
C32(C6×D9) = C6×C9⋊S3φ: C6×D9/C3×C18C2 ⊆ Aut C3108C3:2(C6xD9)324,142

Non-split extensions G=N.Q with N=C3 and Q=C6×D9
extensionφ:Q→Aut NdρLabelID
C3.1(C6×D9) = C2×C32⋊D9φ: C6×D9/C3×C18C2 ⊆ Aut C354C3.1(C6xD9)324,63
C3.2(C6×D9) = C6×D27φ: C6×D9/C3×C18C2 ⊆ Aut C31082C3.2(C6xD9)324,65
C3.3(C6×D9) = C2×C27⋊C6φ: C6×D9/C3×C18C2 ⊆ Aut C3546+C3.3(C6xD9)324,67
C3.4(C6×D9) = D9×C18central extension (φ=1)362C3.4(C6xD9)324,61

׿
×
𝔽