direct product, metacyclic, supersoluble, monomial
Aliases: C2×C27⋊C6, C54⋊C6, D27⋊C6, D54⋊C3, C32.D18, C27⋊(C2×C6), C27⋊C3⋊C22, C9.3(S3×C6), (C3×C9).3D6, C3.3(C6×D9), C6.6(C3×D9), (C3×C6).4D9, C18.6(C3×S3), (C3×C18).12S3, (C2×C27⋊C3)⋊C2, SmallGroup(324,67)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C9 — C27 — C27⋊C3 — C27⋊C6 — C2×C27⋊C6 |
C27 — C2×C27⋊C6 |
Generators and relations for C2×C27⋊C6
G = < a,b,c | a2=b27=c6=1, ab=ba, ac=ca, cbc-1=b17 >
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(2 9 11 27 20 18)(3 17 21 26 12 8)(4 25)(5 6 14 24 23 15)(7 22)(10 19)(13 16)(28 43)(29 51 38 42 47 33)(30 32 48 41 39 50)(31 40)(34 37)(35 45 44 36 53 54)(46 52)
G:=sub<Sym(54)| (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (2,9,11,27,20,18)(3,17,21,26,12,8)(4,25)(5,6,14,24,23,15)(7,22)(10,19)(13,16)(28,43)(29,51,38,42,47,33)(30,32,48,41,39,50)(31,40)(34,37)(35,45,44,36,53,54)(46,52)>;
G:=Group( (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (2,9,11,27,20,18)(3,17,21,26,12,8)(4,25)(5,6,14,24,23,15)(7,22)(10,19)(13,16)(28,43)(29,51,38,42,47,33)(30,32,48,41,39,50)(31,40)(34,37)(35,45,44,36,53,54)(46,52) );
G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(2,9,11,27,20,18),(3,17,21,26,12,8),(4,25),(5,6,14,24,23,15),(7,22),(10,19),(13,16),(28,43),(29,51,38,42,47,33),(30,32,48,41,39,50),(31,40),(34,37),(35,45,44,36,53,54),(46,52)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 9A | 9B | 9C | 9D | 9E | 18A | 18B | 18C | 18D | 18E | 27A | ··· | 27I | 54A | ··· | 54I |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 18 | 18 | 18 | 18 | 18 | 27 | ··· | 27 | 54 | ··· | 54 |
size | 1 | 1 | 27 | 27 | 2 | 3 | 3 | 2 | 3 | 3 | 27 | 27 | 27 | 27 | 2 | 2 | 2 | 6 | 6 | 2 | 2 | 2 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D6 | C3×S3 | D9 | S3×C6 | D18 | C3×D9 | C6×D9 | C27⋊C6 | C2×C27⋊C6 |
kernel | C2×C27⋊C6 | C27⋊C6 | C2×C27⋊C3 | D54 | D27 | C54 | C3×C18 | C3×C9 | C18 | C3×C6 | C9 | C32 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 3 | 2 | 3 | 6 | 6 | 3 | 3 |
Matrix representation of C2×C27⋊C6 ►in GL8(𝔽109)
108 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 108 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
22 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
49 | 86 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 108 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 108 | 108 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 59 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 82 | 32 | 0 | 0 | 0 | 0 |
32 | 80 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | 77 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 108 | 108 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 27 | 59 |
0 | 0 | 0 | 0 | 0 | 0 | 32 | 82 |
0 | 0 | 0 | 0 | 32 | 82 | 0 | 0 |
0 | 0 | 0 | 0 | 50 | 77 | 0 | 0 |
G:=sub<GL(8,GF(109))| [108,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[22,49,0,0,0,0,0,0,3,86,0,0,0,0,0,0,0,0,0,0,0,0,59,82,0,0,0,0,0,0,27,32,0,0,108,1,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,108,1,0,0,0,0,0,0,108,0,0,0],[32,30,0,0,0,0,0,0,80,77,0,0,0,0,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,0,32,50,0,0,0,0,0,0,82,77,0,0,0,0,27,32,0,0,0,0,0,0,59,82,0,0] >;
C2×C27⋊C6 in GAP, Magma, Sage, TeX
C_2\times C_{27}\rtimes C_6
% in TeX
G:=Group("C2xC27:C6");
// GroupNames label
G:=SmallGroup(324,67);
// by ID
G=gap.SmallGroup(324,67);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,1443,735,381,5404,208,7781]);
// Polycyclic
G:=Group<a,b,c|a^2=b^27=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^17>;
// generators/relations
Export