Extensions 1→N→G→Q→1 with N=C6×Dic7 and Q=C2

Direct product G=N×Q with N=C6×Dic7 and Q=C2
dρLabelID
C2×C6×Dic7336C2xC6xDic7336,182

Semidirect products G=N:Q with N=C6×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×Dic7)⋊1C2 = D6⋊Dic7φ: C2/C1C2 ⊆ Out C6×Dic7168(C6xDic7):1C2336,43
(C6×Dic7)⋊2C2 = D42⋊C4φ: C2/C1C2 ⊆ Out C6×Dic7168(C6xDic7):2C2336,44
(C6×Dic7)⋊3C2 = C2×S3×Dic7φ: C2/C1C2 ⊆ Out C6×Dic7168(C6xDic7):3C2336,154
(C6×Dic7)⋊4C2 = Dic3.D14φ: C2/C1C2 ⊆ Out C6×Dic71684(C6xDic7):4C2336,155
(C6×Dic7)⋊5C2 = C2×D21⋊C4φ: C2/C1C2 ⊆ Out C6×Dic7168(C6xDic7):5C2336,156
(C6×Dic7)⋊6C2 = C2×C7⋊D12φ: C2/C1C2 ⊆ Out C6×Dic7168(C6xDic7):6C2336,159
(C6×Dic7)⋊7C2 = C3×D14⋊C4φ: C2/C1C2 ⊆ Out C6×Dic7168(C6xDic7):7C2336,68
(C6×Dic7)⋊8C2 = C3×C23.D7φ: C2/C1C2 ⊆ Out C6×Dic7168(C6xDic7):8C2336,73
(C6×Dic7)⋊9C2 = C3×D42D7φ: C2/C1C2 ⊆ Out C6×Dic71684(C6xDic7):9C2336,179
(C6×Dic7)⋊10C2 = C6×C7⋊D4φ: C2/C1C2 ⊆ Out C6×Dic7168(C6xDic7):10C2336,183
(C6×Dic7)⋊11C2 = D7×C2×C12φ: trivial image168(C6xDic7):11C2336,175

Non-split extensions G=N.Q with N=C6×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×Dic7).1C2 = Dic3×Dic7φ: C2/C1C2 ⊆ Out C6×Dic7336(C6xDic7).1C2336,41
(C6×Dic7).2C2 = C42.Q8φ: C2/C1C2 ⊆ Out C6×Dic7336(C6xDic7).2C2336,45
(C6×Dic7).3C2 = Dic21⋊C4φ: C2/C1C2 ⊆ Out C6×Dic7336(C6xDic7).3C2336,46
(C6×Dic7).4C2 = C14.Dic6φ: C2/C1C2 ⊆ Out C6×Dic7336(C6xDic7).4C2336,47
(C6×Dic7).5C2 = C2×C21⋊Q8φ: C2/C1C2 ⊆ Out C6×Dic7336(C6xDic7).5C2336,160
(C6×Dic7).6C2 = C3×Dic7⋊C4φ: C2/C1C2 ⊆ Out C6×Dic7336(C6xDic7).6C2336,66
(C6×Dic7).7C2 = C3×C4⋊Dic7φ: C2/C1C2 ⊆ Out C6×Dic7336(C6xDic7).7C2336,67
(C6×Dic7).8C2 = C6×Dic14φ: C2/C1C2 ⊆ Out C6×Dic7336(C6xDic7).8C2336,174
(C6×Dic7).9C2 = C12×Dic7φ: trivial image336(C6xDic7).9C2336,65

׿
×
𝔽