Extensions 1→N→G→Q→1 with N=C22×He3 and Q=C3

Direct product G=N×Q with N=C22×He3 and Q=C3

Semidirect products G=N:Q with N=C22×He3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C22×He3)⋊1C3 = He3⋊A4φ: C3/C1C3 ⊆ Out C22×He3549(C2^2xHe3):1C3324,54
(C22×He3)⋊2C3 = He32A4φ: C3/C1C3 ⊆ Out C22×He3369(C2^2xHe3):2C3324,55
(C22×He3)⋊3C3 = C22×C3≀C3φ: C3/C1C3 ⊆ Out C22×He336(C2^2xHe3):3C3324,86
(C22×He3)⋊4C3 = C22×He3⋊C3φ: C3/C1C3 ⊆ Out C22×He3108(C2^2xHe3):4C3324,88
(C22×He3)⋊5C3 = A4×He3φ: C3/C1C3 ⊆ Out C22×He3369(C2^2xHe3):5C3324,130

Non-split extensions G=N.Q with N=C22×He3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C22×He3).1C3 = He3.A4φ: C3/C1C3 ⊆ Out C22×He3549(C2^2xHe3).1C3324,53
(C22×He3).2C3 = C22×He3.C3φ: C3/C1C3 ⊆ Out C22×He3108(C2^2xHe3).2C3324,87
(C22×He3).3C3 = He3.2A4φ: C3/C1C3 ⊆ Out C22×He3549(C2^2xHe3).3C3324,129
(C22×He3).4C3 = C22×C9○He3φ: trivial image108(C2^2xHe3).4C3324,154