Copied to
clipboard

G = He32A4order 324 = 22·34

2nd semidirect product of He3 and A4 acting via A4/C22=C3

metabelian, soluble, monomial

Aliases: He32A4, C62.3C32, C221C3≀C3, (C2×C6).7He3, (C32×A4)⋊1C3, C32.A43C3, C32.3(C3×A4), C3.8(C32⋊A4), (C22×He3)⋊2C3, SmallGroup(324,55)

Series: Derived Chief Lower central Upper central

C1C62 — He32A4
C1C22C2×C6C62C32×A4 — He32A4
C22C2×C6C62 — He32A4
C1C3C32He3

Generators and relations for He32A4
 G = < a,b,c,d,e,f | a3=b3=c3=d2=e2=f3=1, ab=ba, cac-1=ab-1, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=a-1bc, fdf-1=de=ed, fef-1=d >

3C2
3C3
9C3
12C3
12C3
12C3
3C6
9C6
9C6
9C6
9C6
3C32
12C9
12C32
12C32
12C9
12C32
12C32
3A4
3A4
3A4
3C2×C6
9C2×C6
3C3×C6
3C3×C6
3C3×C6
3C3×C6
43- 1+2
4C33
43- 1+2
3C3.A4
3C62
3C3×A4
3C3×A4
3C3×A4
3C3.A4
3C3×A4
3C2×He3
4C3≀C3

Character table of He32A4

 class 123A3B3C3D3E3F3G3H3I3J3K3L6A6B6C6D6E6F6G6H6I6J9A9B9C9D
 size 13113399121212121212339999999936363636
ρ11111111111111111111111111111    trivial
ρ2111111ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ3211ζ32ζ321ζ3ζ3ζ31ζ32ζ3ζ3211    linear of order 3
ρ3111111ζ3ζ32ζ32ζ3ζ3ζ3ζ32ζ3211ζ3ζ31ζ32ζ32ζ321ζ311ζ3ζ32    linear of order 3
ρ411111111ζ3ζ32ζ32ζ32ζ3ζ31111111111ζ3ζ32ζ3ζ32    linear of order 3
ρ511111111ζ32ζ3ζ3ζ3ζ32ζ321111111111ζ32ζ3ζ32ζ3    linear of order 3
ρ6111111ζ3ζ3211111111ζ3ζ31ζ32ζ32ζ321ζ3ζ3ζ32ζ32ζ3    linear of order 3
ρ7111111ζ32ζ311111111ζ32ζ321ζ3ζ3ζ31ζ32ζ32ζ3ζ3ζ32    linear of order 3
ρ8111111ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ311ζ3ζ31ζ32ζ32ζ321ζ3ζ32ζ311    linear of order 3
ρ9111111ζ32ζ3ζ3ζ32ζ32ζ32ζ3ζ311ζ32ζ321ζ3ζ3ζ31ζ3211ζ32ζ3    linear of order 3
ρ103-1333333000000-1-1-1-1-1-1-1-1-1-10000    orthogonal lifted from A4
ρ1133-3-3-3/2-3+3-3/200003+-3/2-3--3/23--3/2-3-3+-3/2--3-3-3-3/2-3+3-3/2000000000000    complex lifted from C3≀C3
ρ1233-3+3-3/2-3-3-3/200003--3/2-3+-3/23+-3/2--3-3--3/2-3-3+3-3/2-3-3-3/2000000000000    complex lifted from C3≀C3
ρ133-13333-3+3-3/2-3-3-3/2000000-1-1ζ65ζ65-1ζ6ζ6ζ6-1ζ650000    complex lifted from C3×A4
ρ143-133-3+3-3/2-3-3-3/200000000-1-1-1+-3-1--3ζ62-1--3-1+-3ζ6520000    complex lifted from C32⋊A4
ρ153333-3+3-3/2-3-3-3/2000000003300-3-3-3/2000-3+3-3/200000    complex lifted from He3
ρ163-133-3-3-3/2-3+3-3/200000000-1-12-1--3ζ65-1--32-1+-3ζ6-1+-30000    complex lifted from C32⋊A4
ρ173-133-3+3-3/2-3-3-3/200000000-1-1-1--32ζ6-1--3-1+-32ζ65-1+-30000    complex lifted from C32⋊A4
ρ1833-3+3-3/2-3-3-3/20000-33+-3/2--3-3+-3/23--3/2-3--3/2-3+3-3/2-3-3-3/2000000000000    complex lifted from C3≀C3
ρ193-13333-3-3-3/2-3+3-3/2000000-1-1ζ6ζ6-1ζ65ζ65ζ65-1ζ60000    complex lifted from C3×A4
ρ203-133-3-3-3/2-3+3-3/200000000-1-1-1--3-1+-3ζ652-1+-3-1--3ζ620000    complex lifted from C32⋊A4
ρ213-133-3-3-3/2-3+3-3/200000000-1-1-1+-32ζ65-1+-3-1--32ζ6-1--30000    complex lifted from C32⋊A4
ρ223333-3-3-3/2-3+3-3/2000000003300-3+3-3/2000-3-3-3/200000    complex lifted from He3
ρ233-133-3+3-3/2-3-3-3/200000000-1-12-1+-3ζ6-1+-32-1--3ζ65-1--30000    complex lifted from C32⋊A4
ρ2433-3+3-3/2-3-3-3/20000-3--3/2--3-3+-3/23+-3/2-33--3/2-3+3-3/2-3-3-3/2000000000000    complex lifted from C3≀C3
ρ2533-3-3-3/2-3+3-3/20000-3+-3/2-3-3--3/23--3/2--33+-3/2-3-3-3/2-3+3-3/2000000000000    complex lifted from C3≀C3
ρ2633-3-3-3/2-3+3-3/20000--33--3/2-3-3--3/23+-3/2-3+-3/2-3-3-3/2-3+3-3/2000000000000    complex lifted from C3≀C3
ρ279-3-9-9-3/2-9+9-3/200000000003+3-3/23-3-3/2000000000000    complex faithful
ρ289-3-9+9-3/2-9-9-3/200000000003-3-3/23+3-3/2000000000000    complex faithful

Smallest permutation representation of He32A4
On 36 points
Generators in S36
(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 15 14)(16 17 18)(19 20 21)(22 24 23)(25 26 27)(28 30 29)(31 32 33)(34 36 35)
(1 24 27)(2 35 17)(3 28 20)(4 13 31)(5 22 26)(6 36 16)(7 29 19)(8 14 33)(9 23 25)(10 34 18)(11 30 21)(12 15 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 35)(14 36)(15 34)(16 33)(17 31)(18 32)(19 26)(20 27)(21 25)(22 29)(23 30)(24 28)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 28)(14 29)(15 30)(16 26)(17 27)(18 25)(19 33)(20 31)(21 32)(22 36)(23 34)(24 35)
(1 5 9)(2 8 11)(3 6 12)(4 7 10)(13 30 36)(14 28 34)(15 29 35)(16 32 20)(17 33 21)(18 31 19)(22 24 23)(25 27 26)

G:=sub<Sym(36)| (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,15,14)(16,17,18)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,32,33)(34,36,35), (1,24,27)(2,35,17)(3,28,20)(4,13,31)(5,22,26)(6,36,16)(7,29,19)(8,14,33)(9,23,25)(10,34,18)(11,30,21)(12,15,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,35)(14,36)(15,34)(16,33)(17,31)(18,32)(19,26)(20,27)(21,25)(22,29)(23,30)(24,28), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,28)(14,29)(15,30)(16,26)(17,27)(18,25)(19,33)(20,31)(21,32)(22,36)(23,34)(24,35), (1,5,9)(2,8,11)(3,6,12)(4,7,10)(13,30,36)(14,28,34)(15,29,35)(16,32,20)(17,33,21)(18,31,19)(22,24,23)(25,27,26)>;

G:=Group( (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,15,14)(16,17,18)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,32,33)(34,36,35), (1,24,27)(2,35,17)(3,28,20)(4,13,31)(5,22,26)(6,36,16)(7,29,19)(8,14,33)(9,23,25)(10,34,18)(11,30,21)(12,15,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,35)(14,36)(15,34)(16,33)(17,31)(18,32)(19,26)(20,27)(21,25)(22,29)(23,30)(24,28), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,28)(14,29)(15,30)(16,26)(17,27)(18,25)(19,33)(20,31)(21,32)(22,36)(23,34)(24,35), (1,5,9)(2,8,11)(3,6,12)(4,7,10)(13,30,36)(14,28,34)(15,29,35)(16,32,20)(17,33,21)(18,31,19)(22,24,23)(25,27,26) );

G=PermutationGroup([[(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,15,14),(16,17,18),(19,20,21),(22,24,23),(25,26,27),(28,30,29),(31,32,33),(34,36,35)], [(1,24,27),(2,35,17),(3,28,20),(4,13,31),(5,22,26),(6,36,16),(7,29,19),(8,14,33),(9,23,25),(10,34,18),(11,30,21),(12,15,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,35),(14,36),(15,34),(16,33),(17,31),(18,32),(19,26),(20,27),(21,25),(22,29),(23,30),(24,28)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,28),(14,29),(15,30),(16,26),(17,27),(18,25),(19,33),(20,31),(21,32),(22,36),(23,34),(24,35)], [(1,5,9),(2,8,11),(3,6,12),(4,7,10),(13,30,36),(14,28,34),(15,29,35),(16,32,20),(17,33,21),(18,31,19),(22,24,23),(25,27,26)]])

Matrix representation of He32A4 in GL6(𝔽19)

100000
0110000
007000
000100
000010
000001
,
1100000
0110000
0011000
000100
000010
000001
,
010000
001000
100000
0001100
0000110
0000011
,
100000
010000
001000
0000181
0000180
0001180
,
100000
010000
001000
0001800
0001801
0001810
,
700000
070000
0011000
000010
000001
000100

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,18,18,18,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,18,18,0,0,0,0,0,1,0,0,0,0,1,0],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;

He32A4 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_2A_4
% in TeX

G:=Group("He3:2A4");
// GroupNames label

G:=SmallGroup(324,55);
// by ID

G=gap.SmallGroup(324,55);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,145,224,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^2=f^3=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=a^-1*b*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

Export

Subgroup lattice of He32A4 in TeX
Character table of He32A4 in TeX

׿
×
𝔽