Copied to
clipboard

G = He3:2A4order 324 = 22·34

2nd semidirect product of He3 and A4 acting via A4/C22=C3

metabelian, soluble, monomial

Aliases: He3:2A4, C62.3C32, C22:1C3wrC3, (C2xC6).7He3, (C32xA4):1C3, C32.A4:3C3, C32.3(C3xA4), C3.8(C32:A4), (C22xHe3):2C3, SmallGroup(324,55)

Series: Derived Chief Lower central Upper central

C1C62 — He3:2A4
C1C22C2xC6C62C32xA4 — He3:2A4
C22C2xC6C62 — He3:2A4
C1C3C32He3

Generators and relations for He3:2A4
 G = < a,b,c,d,e,f | a3=b3=c3=d2=e2=f3=1, ab=ba, cac-1=ab-1, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=a-1bc, fdf-1=de=ed, fef-1=d >

Subgroups: 250 in 51 conjugacy classes, 12 normal (10 characteristic)
Quotients: C1, C3, C32, A4, He3, C3xA4, C3wrC3, C32:A4, He3:2A4
3C2
3C3
9C3
12C3
12C3
12C3
3C6
9C6
9C6
9C6
9C6
3C32
12C9
12C32
12C32
12C9
12C32
12C32
3A4
3A4
3A4
3C2xC6
9C2xC6
3C3xC6
3C3xC6
3C3xC6
3C3xC6
43- 1+2
4C33
43- 1+2
3C3.A4
3C62
3C3xA4
3C3xA4
3C3xA4
3C3.A4
3C3xA4
3C2xHe3
4C3wrC3

Character table of He3:2A4

 class 123A3B3C3D3E3F3G3H3I3J3K3L6A6B6C6D6E6F6G6H6I6J9A9B9C9D
 size 13113399121212121212339999999936363636
ρ11111111111111111111111111111    trivial
ρ2111111ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ3211ζ32ζ321ζ3ζ3ζ31ζ32ζ3ζ3211    linear of order 3
ρ3111111ζ3ζ32ζ32ζ3ζ3ζ3ζ32ζ3211ζ3ζ31ζ32ζ32ζ321ζ311ζ3ζ32    linear of order 3
ρ411111111ζ3ζ32ζ32ζ32ζ3ζ31111111111ζ3ζ32ζ3ζ32    linear of order 3
ρ511111111ζ32ζ3ζ3ζ3ζ32ζ321111111111ζ32ζ3ζ32ζ3    linear of order 3
ρ6111111ζ3ζ3211111111ζ3ζ31ζ32ζ32ζ321ζ3ζ3ζ32ζ32ζ3    linear of order 3
ρ7111111ζ32ζ311111111ζ32ζ321ζ3ζ3ζ31ζ32ζ32ζ3ζ3ζ32    linear of order 3
ρ8111111ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ311ζ3ζ31ζ32ζ32ζ321ζ3ζ32ζ311    linear of order 3
ρ9111111ζ32ζ3ζ3ζ32ζ32ζ32ζ3ζ311ζ32ζ321ζ3ζ3ζ31ζ3211ζ32ζ3    linear of order 3
ρ103-1333333000000-1-1-1-1-1-1-1-1-1-10000    orthogonal lifted from A4
ρ1133-3-3-3/2-3+3-3/200003+-3/2-3--3/23--3/2-3-3+-3/2--3-3-3-3/2-3+3-3/2000000000000    complex lifted from C3wrC3
ρ1233-3+3-3/2-3-3-3/200003--3/2-3+-3/23+-3/2--3-3--3/2-3-3+3-3/2-3-3-3/2000000000000    complex lifted from C3wrC3
ρ133-13333-3+3-3/2-3-3-3/2000000-1-1ζ65ζ65-1ζ6ζ6ζ6-1ζ650000    complex lifted from C3xA4
ρ143-133-3+3-3/2-3-3-3/200000000-1-1-1+-3-1--3ζ62-1--3-1+-3ζ6520000    complex lifted from C32:A4
ρ153333-3+3-3/2-3-3-3/2000000003300-3-3-3/2000-3+3-3/200000    complex lifted from He3
ρ163-133-3-3-3/2-3+3-3/200000000-1-12-1--3ζ65-1--32-1+-3ζ6-1+-30000    complex lifted from C32:A4
ρ173-133-3+3-3/2-3-3-3/200000000-1-1-1--32ζ6-1--3-1+-32ζ65-1+-30000    complex lifted from C32:A4
ρ1833-3+3-3/2-3-3-3/20000-33+-3/2--3-3+-3/23--3/2-3--3/2-3+3-3/2-3-3-3/2000000000000    complex lifted from C3wrC3
ρ193-13333-3-3-3/2-3+3-3/2000000-1-1ζ6ζ6-1ζ65ζ65ζ65-1ζ60000    complex lifted from C3xA4
ρ203-133-3-3-3/2-3+3-3/200000000-1-1-1--3-1+-3ζ652-1+-3-1--3ζ620000    complex lifted from C32:A4
ρ213-133-3-3-3/2-3+3-3/200000000-1-1-1+-32ζ65-1+-3-1--32ζ6-1--30000    complex lifted from C32:A4
ρ223333-3-3-3/2-3+3-3/2000000003300-3+3-3/2000-3-3-3/200000    complex lifted from He3
ρ233-133-3+3-3/2-3-3-3/200000000-1-12-1+-3ζ6-1+-32-1--3ζ65-1--30000    complex lifted from C32:A4
ρ2433-3+3-3/2-3-3-3/20000-3--3/2--3-3+-3/23+-3/2-33--3/2-3+3-3/2-3-3-3/2000000000000    complex lifted from C3wrC3
ρ2533-3-3-3/2-3+3-3/20000-3+-3/2-3-3--3/23--3/2--33+-3/2-3-3-3/2-3+3-3/2000000000000    complex lifted from C3wrC3
ρ2633-3-3-3/2-3+3-3/20000--33--3/2-3-3--3/23+-3/2-3+-3/2-3-3-3/2-3+3-3/2000000000000    complex lifted from C3wrC3
ρ279-3-9-9-3/2-9+9-3/200000000003+3-3/23-3-3/2000000000000    complex faithful
ρ289-3-9+9-3/2-9-9-3/200000000003-3-3/23+3-3/2000000000000    complex faithful

Smallest permutation representation of He3:2A4
On 36 points
Generators in S36
(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 15 14)(16 17 18)(19 20 21)(22 24 23)(25 26 27)(28 30 29)(31 32 33)(34 36 35)
(1 24 27)(2 35 17)(3 28 20)(4 13 31)(5 22 26)(6 36 16)(7 29 19)(8 14 33)(9 23 25)(10 34 18)(11 30 21)(12 15 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 35)(14 36)(15 34)(16 33)(17 31)(18 32)(19 26)(20 27)(21 25)(22 29)(23 30)(24 28)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 28)(14 29)(15 30)(16 26)(17 27)(18 25)(19 33)(20 31)(21 32)(22 36)(23 34)(24 35)
(1 5 9)(2 8 11)(3 6 12)(4 7 10)(13 30 36)(14 28 34)(15 29 35)(16 32 20)(17 33 21)(18 31 19)(22 24 23)(25 27 26)

G:=sub<Sym(36)| (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,15,14)(16,17,18)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,32,33)(34,36,35), (1,24,27)(2,35,17)(3,28,20)(4,13,31)(5,22,26)(6,36,16)(7,29,19)(8,14,33)(9,23,25)(10,34,18)(11,30,21)(12,15,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,35)(14,36)(15,34)(16,33)(17,31)(18,32)(19,26)(20,27)(21,25)(22,29)(23,30)(24,28), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,28)(14,29)(15,30)(16,26)(17,27)(18,25)(19,33)(20,31)(21,32)(22,36)(23,34)(24,35), (1,5,9)(2,8,11)(3,6,12)(4,7,10)(13,30,36)(14,28,34)(15,29,35)(16,32,20)(17,33,21)(18,31,19)(22,24,23)(25,27,26)>;

G:=Group( (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,15,14)(16,17,18)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,32,33)(34,36,35), (1,24,27)(2,35,17)(3,28,20)(4,13,31)(5,22,26)(6,36,16)(7,29,19)(8,14,33)(9,23,25)(10,34,18)(11,30,21)(12,15,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,35)(14,36)(15,34)(16,33)(17,31)(18,32)(19,26)(20,27)(21,25)(22,29)(23,30)(24,28), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,28)(14,29)(15,30)(16,26)(17,27)(18,25)(19,33)(20,31)(21,32)(22,36)(23,34)(24,35), (1,5,9)(2,8,11)(3,6,12)(4,7,10)(13,30,36)(14,28,34)(15,29,35)(16,32,20)(17,33,21)(18,31,19)(22,24,23)(25,27,26) );

G=PermutationGroup([[(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,15,14),(16,17,18),(19,20,21),(22,24,23),(25,26,27),(28,30,29),(31,32,33),(34,36,35)], [(1,24,27),(2,35,17),(3,28,20),(4,13,31),(5,22,26),(6,36,16),(7,29,19),(8,14,33),(9,23,25),(10,34,18),(11,30,21),(12,15,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,35),(14,36),(15,34),(16,33),(17,31),(18,32),(19,26),(20,27),(21,25),(22,29),(23,30),(24,28)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,28),(14,29),(15,30),(16,26),(17,27),(18,25),(19,33),(20,31),(21,32),(22,36),(23,34),(24,35)], [(1,5,9),(2,8,11),(3,6,12),(4,7,10),(13,30,36),(14,28,34),(15,29,35),(16,32,20),(17,33,21),(18,31,19),(22,24,23),(25,27,26)]])

Matrix representation of He3:2A4 in GL6(F19)

100000
0110000
007000
000100
000010
000001
,
1100000
0110000
0011000
000100
000010
000001
,
010000
001000
100000
0001100
0000110
0000011
,
100000
010000
001000
0000181
0000180
0001180
,
100000
010000
001000
0001800
0001801
0001810
,
700000
070000
0011000
000010
000001
000100

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,18,18,18,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,18,18,0,0,0,0,0,1,0,0,0,0,1,0],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;

He3:2A4 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_2A_4
% in TeX

G:=Group("He3:2A4");
// GroupNames label

G:=SmallGroup(324,55);
// by ID

G=gap.SmallGroup(324,55);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,145,224,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^2=f^3=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=a^-1*b*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

Export

Subgroup lattice of He3:2A4 in TeX
Character table of He3:2A4 in TeX

׿
x
:
Z
F
o
wr
Q
<