Copied to
clipboard

G = He3.A4order 324 = 22·34

The non-split extension by He3 of A4 acting via A4/C22=C3

metabelian, soluble, monomial

Aliases: He3.A4, C62.1C32, (C2×C6).5He3, C32.A42C3, C32.1(C3×A4), C3.6(C32⋊A4), C222(He3.C3), (C22×He3).1C3, (C3×C3.A4)⋊2C3, SmallGroup(324,53)

Series: Derived Chief Lower central Upper central

C1C62 — He3.A4
C1C22C2×C6C62C3×C3.A4 — He3.A4
C22C2×C6C62 — He3.A4
C1C3C32He3

Generators and relations for He3.A4
 G = < a,b,c,d,e,f | a3=b3=c3=d2=e2=1, f3=b-1, ab=ba, cac-1=ab-1, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=a-1bc, fdf-1=de=ed, fef-1=d >

3C2
3C3
9C3
3C6
9C6
9C6
9C6
9C6
3C32
12C9
12C9
12C9
3C2×C6
9C2×C6
3C3×C6
3C3×C6
3C3×C6
3C3×C6
4C3×C9
43- 1+2
43- 1+2
3C3.A4
3C3.A4
3C3.A4
3C62
3C2×He3
4He3.C3

Character table of He3.A4

 class 123A3B3C3D3E3F6A6B6C6D6E6F6G6H6I6J9A9B9C9D9E9F9G9H9I9J
 size 13113399339999999912121212121236363636
ρ11111111111111111111111111111    trivial
ρ2111111ζ3ζ3211ζ3ζ32ζ32ζ321ζ3ζ31111111ζ3ζ32ζ32ζ3    linear of order 3
ρ3111111ζ32ζ311ζ32ζ3ζ3ζ31ζ32ζ321ζ32ζ32ζ32ζ3ζ3ζ3ζ31ζ321    linear of order 3
ρ4111111ζ32ζ311ζ32ζ3ζ3ζ31ζ32ζ321ζ3ζ3ζ3ζ32ζ32ζ321ζ321ζ3    linear of order 3
ρ5111111ζ32ζ311ζ32ζ3ζ3ζ31ζ32ζ321111111ζ32ζ3ζ3ζ32    linear of order 3
ρ6111111111111111111ζ32ζ32ζ32ζ3ζ3ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ7111111ζ3ζ3211ζ3ζ32ζ32ζ321ζ3ζ31ζ32ζ32ζ32ζ3ζ3ζ31ζ31ζ32    linear of order 3
ρ8111111ζ3ζ3211ζ3ζ32ζ32ζ321ζ3ζ31ζ3ζ3ζ3ζ32ζ32ζ32ζ321ζ31    linear of order 3
ρ9111111111111111111ζ3ζ3ζ3ζ32ζ32ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ103-1333333-1-1-1-1-1-1-1-1-1-10000000000    orthogonal lifted from A4
ρ113333-3+3-3/2-3-3-3/200330000-3+3-3/200-3-3-3/20000000000    complex lifted from He3
ρ123-133-3-3-3/2-3+3-3/200-1-12-1+-3-1--32ζ6-1--3-1+-3ζ650000000000    complex lifted from C32⋊A4
ρ133-13333-3+3-3/2-3-3-3/2-1-1ζ65ζ6ζ6ζ6-1ζ65ζ65-10000000000    complex lifted from C3×A4
ρ143-133-3-3-3/2-3+3-3/200-1-1-1+-32-1+-3-1--3ζ62-1--3ζ650000000000    complex lifted from C32⋊A4
ρ153333-3-3-3/2-3+3-3/200330000-3-3-3/200-3+3-3/20000000000    complex lifted from He3
ρ163-13333-3-3-3/2-3+3-3/2-1-1ζ6ζ65ζ65ζ65-1ζ6ζ6-10000000000    complex lifted from C3×A4
ρ173-133-3-3-3/2-3+3-3/200-1-1-1--3-1--32-1+-3ζ6-1+-32ζ650000000000    complex lifted from C32⋊A4
ρ183-133-3+3-3/2-3-3-3/200-1-12-1--3-1+-32ζ65-1+-3-1--3ζ60000000000    complex lifted from C32⋊A4
ρ193-133-3+3-3/2-3-3-3/200-1-1-1+-3-1+-32-1--3ζ65-1--32ζ60000000000    complex lifted from C32⋊A4
ρ203-133-3+3-3/2-3-3-3/200-1-1-1--32-1--3-1+-3ζ652-1+-3ζ60000000000    complex lifted from C32⋊A4
ρ2133-3-3-3/2-3+3-3/20000-3-3-3/2-3+3-3/200000000ζ97+2ζ94979ζ94+2ζ99895ζ98+2ζ9295920000    complex lifted from He3.C3
ρ2233-3-3-3/2-3+3-3/20000-3-3-3/2-3+3-3/200000000ζ94+2ζ9ζ97+2ζ94979ζ98+2ζ92959298950000    complex lifted from He3.C3
ρ2333-3+3-3/2-3-3-3/20000-3+3-3/2-3-3-3/2000000009592ζ98+2ζ929895ζ94+2ζ9979ζ97+2ζ940000    complex lifted from He3.C3
ρ2433-3+3-3/2-3-3-3/20000-3+3-3/2-3-3-3/20000000098959592ζ98+2ζ92979ζ97+2ζ94ζ94+2ζ90000    complex lifted from He3.C3
ρ2533-3+3-3/2-3-3-3/20000-3+3-3/2-3-3-3/200000000ζ98+2ζ9298959592ζ97+2ζ94ζ94+2ζ99790000    complex lifted from He3.C3
ρ2633-3-3-3/2-3+3-3/20000-3-3-3/2-3+3-3/200000000979ζ94+2ζ9ζ97+2ζ9495929895ζ98+2ζ920000    complex lifted from He3.C3
ρ279-3-9-9-3/2-9+9-3/200003+3-3/23-3-3/2000000000000000000    complex faithful
ρ289-3-9+9-3/2-9-9-3/200003-3-3/23+3-3/2000000000000000000    complex faithful

Smallest permutation representation of He3.A4
On 54 points
Generators in S54
(1 34 26)(2 35 27)(3 36 19)(4 28 20)(5 29 21)(6 30 22)(7 31 23)(8 32 24)(9 33 25)(10 45 52)(11 37 53)(12 38 54)(13 39 46)(14 40 47)(15 41 48)(16 42 49)(17 43 50)(18 44 51)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)
(2 27 29)(3 36 25)(5 21 32)(6 30 19)(8 24 35)(9 33 22)(10 45 49)(12 54 41)(13 39 52)(15 48 44)(16 42 46)(18 51 38)(20 23 26)(28 34 31)(37 43 40)(47 50 53)
(1 14)(2 15)(4 17)(5 18)(7 11)(8 12)(20 50)(21 51)(23 53)(24 54)(26 47)(27 48)(28 43)(29 44)(31 37)(32 38)(34 40)(35 41)
(2 15)(3 16)(5 18)(6 10)(8 12)(9 13)(19 49)(21 51)(22 52)(24 54)(25 46)(27 48)(29 44)(30 45)(32 38)(33 39)(35 41)(36 42)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,34,26)(2,35,27)(3,36,19)(4,28,20)(5,29,21)(6,30,22)(7,31,23)(8,32,24)(9,33,25)(10,45,52)(11,37,53)(12,38,54)(13,39,46)(14,40,47)(15,41,48)(16,42,49)(17,43,50)(18,44,51), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (2,27,29)(3,36,25)(5,21,32)(6,30,19)(8,24,35)(9,33,22)(10,45,49)(12,54,41)(13,39,52)(15,48,44)(16,42,46)(18,51,38)(20,23,26)(28,34,31)(37,43,40)(47,50,53), (1,14)(2,15)(4,17)(5,18)(7,11)(8,12)(20,50)(21,51)(23,53)(24,54)(26,47)(27,48)(28,43)(29,44)(31,37)(32,38)(34,40)(35,41), (2,15)(3,16)(5,18)(6,10)(8,12)(9,13)(19,49)(21,51)(22,52)(24,54)(25,46)(27,48)(29,44)(30,45)(32,38)(33,39)(35,41)(36,42), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,34,26)(2,35,27)(3,36,19)(4,28,20)(5,29,21)(6,30,22)(7,31,23)(8,32,24)(9,33,25)(10,45,52)(11,37,53)(12,38,54)(13,39,46)(14,40,47)(15,41,48)(16,42,49)(17,43,50)(18,44,51), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (2,27,29)(3,36,25)(5,21,32)(6,30,19)(8,24,35)(9,33,22)(10,45,49)(12,54,41)(13,39,52)(15,48,44)(16,42,46)(18,51,38)(20,23,26)(28,34,31)(37,43,40)(47,50,53), (1,14)(2,15)(4,17)(5,18)(7,11)(8,12)(20,50)(21,51)(23,53)(24,54)(26,47)(27,48)(28,43)(29,44)(31,37)(32,38)(34,40)(35,41), (2,15)(3,16)(5,18)(6,10)(8,12)(9,13)(19,49)(21,51)(22,52)(24,54)(25,46)(27,48)(29,44)(30,45)(32,38)(33,39)(35,41)(36,42), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,34,26),(2,35,27),(3,36,19),(4,28,20),(5,29,21),(6,30,22),(7,31,23),(8,32,24),(9,33,25),(10,45,52),(11,37,53),(12,38,54),(13,39,46),(14,40,47),(15,41,48),(16,42,49),(17,43,50),(18,44,51)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51)], [(2,27,29),(3,36,25),(5,21,32),(6,30,19),(8,24,35),(9,33,22),(10,45,49),(12,54,41),(13,39,52),(15,48,44),(16,42,46),(18,51,38),(20,23,26),(28,34,31),(37,43,40),(47,50,53)], [(1,14),(2,15),(4,17),(5,18),(7,11),(8,12),(20,50),(21,51),(23,53),(24,54),(26,47),(27,48),(28,43),(29,44),(31,37),(32,38),(34,40),(35,41)], [(2,15),(3,16),(5,18),(6,10),(8,12),(9,13),(19,49),(21,51),(22,52),(24,54),(25,46),(27,48),(29,44),(30,45),(32,38),(33,39),(35,41),(36,42)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

Matrix representation of He3.A4 in GL6(𝔽19)

160000
0181000
0180000
000100
000010
000001
,
1100000
0110000
0011000
000100
000010
000001
,
100000
170000
8011000
000100
000010
000001
,
100000
010000
001000
0001800
000010
00001518
,
100000
010000
001000
000100
0000180
0003018
,
61310000
0010000
0910000
000010
00031517
000304

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,6,18,18,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,8,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,1,15,0,0,0,0,0,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,3,0,0,0,0,18,0,0,0,0,0,0,18],[6,0,0,0,0,0,13,0,9,0,0,0,10,10,10,0,0,0,0,0,0,0,3,3,0,0,0,1,15,0,0,0,0,0,17,4] >;

He3.A4 in GAP, Magma, Sage, TeX

{\rm He}_3.A_4
% in TeX

G:=Group("He3.A4");
// GroupNames label

G:=SmallGroup(324,53);
// by ID

G=gap.SmallGroup(324,53);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,162,145,386,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^2=1,f^3=b^-1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=a^-1*b*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

Export

Subgroup lattice of He3.A4 in TeX
Character table of He3.A4 in TeX

׿
×
𝔽