Aliases: He3.A4, C62.1C32, (C2×C6).5He3, C32.A4⋊2C3, C32.1(C3×A4), C3.6(C32⋊A4), C22⋊2(He3.C3), (C22×He3).1C3, (C3×C3.A4)⋊2C3, SmallGroup(324,53)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3.A4
G = < a,b,c,d,e,f | a3=b3=c3=d2=e2=1, f3=b-1, ab=ba, cac-1=ab-1, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=a-1bc, fdf-1=de=ed, fef-1=d >
Character table of He3.A4
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | |
size | 1 | 3 | 1 | 1 | 3 | 3 | 9 | 9 | 3 | 3 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 36 | 36 | 36 | 36 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | ζ32 | 1 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | ζ32 | 1 | ζ3 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | ζ3 | 1 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | ζ3 | 1 | linear of order 3 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ10 | 3 | -1 | 3 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ11 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -3+3√-3/2 | 0 | 0 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3 |
ρ12 | 3 | -1 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -1 | -1 | 2 | -1+√-3 | -1-√-3 | 2 | ζ6 | -1-√-3 | -1+√-3 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊A4 |
ρ13 | 3 | -1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1 | -1 | ζ65 | ζ6 | ζ6 | ζ6 | -1 | ζ65 | ζ65 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×A4 |
ρ14 | 3 | -1 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -1 | -1 | -1+√-3 | 2 | -1+√-3 | -1-√-3 | ζ6 | 2 | -1-√-3 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊A4 |
ρ15 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -3-3√-3/2 | 0 | 0 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3 |
ρ16 | 3 | -1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1 | -1 | ζ6 | ζ65 | ζ65 | ζ65 | -1 | ζ6 | ζ6 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×A4 |
ρ17 | 3 | -1 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -1 | -1 | -1-√-3 | -1-√-3 | 2 | -1+√-3 | ζ6 | -1+√-3 | 2 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊A4 |
ρ18 | 3 | -1 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -1 | -1 | 2 | -1-√-3 | -1+√-3 | 2 | ζ65 | -1+√-3 | -1-√-3 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊A4 |
ρ19 | 3 | -1 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -1 | -1 | -1+√-3 | -1+√-3 | 2 | -1-√-3 | ζ65 | -1-√-3 | 2 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊A4 |
ρ20 | 3 | -1 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -1 | -1 | -1-√-3 | 2 | -1-√-3 | -1+√-3 | ζ65 | 2 | -1+√-3 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊A4 |
ρ21 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ97+2ζ94 | 2ζ97+ζ9 | ζ94+2ζ9 | 2ζ98+ζ95 | ζ98+2ζ92 | 2ζ95+ζ92 | 0 | 0 | 0 | 0 | complex lifted from He3.C3 |
ρ22 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ94+2ζ9 | ζ97+2ζ94 | 2ζ97+ζ9 | ζ98+2ζ92 | 2ζ95+ζ92 | 2ζ98+ζ95 | 0 | 0 | 0 | 0 | complex lifted from He3.C3 |
ρ23 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ92 | ζ98+2ζ92 | 2ζ98+ζ95 | ζ94+2ζ9 | 2ζ97+ζ9 | ζ97+2ζ94 | 0 | 0 | 0 | 0 | complex lifted from He3.C3 |
ρ24 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98+ζ95 | 2ζ95+ζ92 | ζ98+2ζ92 | 2ζ97+ζ9 | ζ97+2ζ94 | ζ94+2ζ9 | 0 | 0 | 0 | 0 | complex lifted from He3.C3 |
ρ25 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+2ζ92 | 2ζ98+ζ95 | 2ζ95+ζ92 | ζ97+2ζ94 | ζ94+2ζ9 | 2ζ97+ζ9 | 0 | 0 | 0 | 0 | complex lifted from He3.C3 |
ρ26 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ97+ζ9 | ζ94+2ζ9 | ζ97+2ζ94 | 2ζ95+ζ92 | 2ζ98+ζ95 | ζ98+2ζ92 | 0 | 0 | 0 | 0 | complex lifted from He3.C3 |
ρ27 | 9 | -3 | -9-9√-3/2 | -9+9√-3/2 | 0 | 0 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 9 | -3 | -9+9√-3/2 | -9-9√-3/2 | 0 | 0 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 34 26)(2 35 27)(3 36 19)(4 28 20)(5 29 21)(6 30 22)(7 31 23)(8 32 24)(9 33 25)(10 45 52)(11 37 53)(12 38 54)(13 39 46)(14 40 47)(15 41 48)(16 42 49)(17 43 50)(18 44 51)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)
(2 27 29)(3 36 25)(5 21 32)(6 30 19)(8 24 35)(9 33 22)(10 45 49)(12 54 41)(13 39 52)(15 48 44)(16 42 46)(18 51 38)(20 23 26)(28 34 31)(37 43 40)(47 50 53)
(1 14)(2 15)(4 17)(5 18)(7 11)(8 12)(20 50)(21 51)(23 53)(24 54)(26 47)(27 48)(28 43)(29 44)(31 37)(32 38)(34 40)(35 41)
(2 15)(3 16)(5 18)(6 10)(8 12)(9 13)(19 49)(21 51)(22 52)(24 54)(25 46)(27 48)(29 44)(30 45)(32 38)(33 39)(35 41)(36 42)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
G:=sub<Sym(54)| (1,34,26)(2,35,27)(3,36,19)(4,28,20)(5,29,21)(6,30,22)(7,31,23)(8,32,24)(9,33,25)(10,45,52)(11,37,53)(12,38,54)(13,39,46)(14,40,47)(15,41,48)(16,42,49)(17,43,50)(18,44,51), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (2,27,29)(3,36,25)(5,21,32)(6,30,19)(8,24,35)(9,33,22)(10,45,49)(12,54,41)(13,39,52)(15,48,44)(16,42,46)(18,51,38)(20,23,26)(28,34,31)(37,43,40)(47,50,53), (1,14)(2,15)(4,17)(5,18)(7,11)(8,12)(20,50)(21,51)(23,53)(24,54)(26,47)(27,48)(28,43)(29,44)(31,37)(32,38)(34,40)(35,41), (2,15)(3,16)(5,18)(6,10)(8,12)(9,13)(19,49)(21,51)(22,52)(24,54)(25,46)(27,48)(29,44)(30,45)(32,38)(33,39)(35,41)(36,42), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;
G:=Group( (1,34,26)(2,35,27)(3,36,19)(4,28,20)(5,29,21)(6,30,22)(7,31,23)(8,32,24)(9,33,25)(10,45,52)(11,37,53)(12,38,54)(13,39,46)(14,40,47)(15,41,48)(16,42,49)(17,43,50)(18,44,51), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (2,27,29)(3,36,25)(5,21,32)(6,30,19)(8,24,35)(9,33,22)(10,45,49)(12,54,41)(13,39,52)(15,48,44)(16,42,46)(18,51,38)(20,23,26)(28,34,31)(37,43,40)(47,50,53), (1,14)(2,15)(4,17)(5,18)(7,11)(8,12)(20,50)(21,51)(23,53)(24,54)(26,47)(27,48)(28,43)(29,44)(31,37)(32,38)(34,40)(35,41), (2,15)(3,16)(5,18)(6,10)(8,12)(9,13)(19,49)(21,51)(22,52)(24,54)(25,46)(27,48)(29,44)(30,45)(32,38)(33,39)(35,41)(36,42), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );
G=PermutationGroup([[(1,34,26),(2,35,27),(3,36,19),(4,28,20),(5,29,21),(6,30,22),(7,31,23),(8,32,24),(9,33,25),(10,45,52),(11,37,53),(12,38,54),(13,39,46),(14,40,47),(15,41,48),(16,42,49),(17,43,50),(18,44,51)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51)], [(2,27,29),(3,36,25),(5,21,32),(6,30,19),(8,24,35),(9,33,22),(10,45,49),(12,54,41),(13,39,52),(15,48,44),(16,42,46),(18,51,38),(20,23,26),(28,34,31),(37,43,40),(47,50,53)], [(1,14),(2,15),(4,17),(5,18),(7,11),(8,12),(20,50),(21,51),(23,53),(24,54),(26,47),(27,48),(28,43),(29,44),(31,37),(32,38),(34,40),(35,41)], [(2,15),(3,16),(5,18),(6,10),(8,12),(9,13),(19,49),(21,51),(22,52),(24,54),(25,46),(27,48),(29,44),(30,45),(32,38),(33,39),(35,41),(36,42)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])
Matrix representation of He3.A4 ►in GL6(𝔽19)
1 | 6 | 0 | 0 | 0 | 0 |
0 | 18 | 1 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 7 | 0 | 0 | 0 | 0 |
8 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 15 | 18 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 3 | 0 | 18 |
6 | 13 | 10 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 9 | 10 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 3 | 15 | 17 |
0 | 0 | 0 | 3 | 0 | 4 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,6,18,18,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,8,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,1,15,0,0,0,0,0,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,3,0,0,0,0,18,0,0,0,0,0,0,18],[6,0,0,0,0,0,13,0,9,0,0,0,10,10,10,0,0,0,0,0,0,0,3,3,0,0,0,1,15,0,0,0,0,0,17,4] >;
He3.A4 in GAP, Magma, Sage, TeX
{\rm He}_3.A_4
% in TeX
G:=Group("He3.A4");
// GroupNames label
G:=SmallGroup(324,53);
// by ID
G=gap.SmallGroup(324,53);
# by ID
G:=PCGroup([6,-3,-3,-3,-3,-2,2,162,145,386,4864,8753]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^2=1,f^3=b^-1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=a^-1*b*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations
Export
Subgroup lattice of He3.A4 in TeX
Character table of He3.A4 in TeX