# Extensions 1→N→G→Q→1 with N=C6×He3 and Q=C2

Direct product G=N×Q with N=C6×He3 and Q=C2
dρLabelID
C2×C6×He3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C6×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×He3)⋊1C2 = C6×C32⋊C6φ: C2/C1C2 ⊆ Out C6×He3366(C6xHe3):1C2324,138
(C6×He3)⋊2C2 = C2×S3×He3φ: C2/C1C2 ⊆ Out C6×He3366(C6xHe3):2C2324,139
(C6×He3)⋊3C2 = C2×He34S3φ: C2/C1C2 ⊆ Out C6×He354(C6xHe3):3C2324,144
(C6×He3)⋊4C2 = C6×He3⋊C2φ: C2/C1C2 ⊆ Out C6×He354(C6xHe3):4C2324,145
(C6×He3)⋊5C2 = C2×He35S3φ: C2/C1C2 ⊆ Out C6×He3366(C6xHe3):5C2324,150

Non-split extensions G=N.Q with N=C6×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×He3).1C2 = C3×C32⋊C12φ: C2/C1C2 ⊆ Out C6×He3366(C6xHe3).1C2324,92
(C6×He3).2C2 = Dic3×He3φ: C2/C1C2 ⊆ Out C6×He3366(C6xHe3).2C2324,93
(C6×He3).3C2 = C334C12φ: C2/C1C2 ⊆ Out C6×He3108(C6xHe3).3C2324,98
(C6×He3).4C2 = C3×He33C4φ: C2/C1C2 ⊆ Out C6×He3108(C6xHe3).4C2324,99
(C6×He3).5C2 = He36Dic3φ: C2/C1C2 ⊆ Out C6×He3366(C6xHe3).5C2324,104
(C6×He3).6C2 = C12×He3φ: trivial image108(C6xHe3).6C2324,106

׿
×
𝔽