Extensions 1→N→G→Q→1 with N=C6xHe3 and Q=C2

Direct product G=NxQ with N=C6xHe3 and Q=C2
dρLabelID
C2xC6xHe3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C6xHe3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xHe3):1C2 = C6xC32:C6φ: C2/C1C2 ⊆ Out C6xHe3366(C6xHe3):1C2324,138
(C6xHe3):2C2 = C2xS3xHe3φ: C2/C1C2 ⊆ Out C6xHe3366(C6xHe3):2C2324,139
(C6xHe3):3C2 = C2xHe3:4S3φ: C2/C1C2 ⊆ Out C6xHe354(C6xHe3):3C2324,144
(C6xHe3):4C2 = C6xHe3:C2φ: C2/C1C2 ⊆ Out C6xHe354(C6xHe3):4C2324,145
(C6xHe3):5C2 = C2xHe3:5S3φ: C2/C1C2 ⊆ Out C6xHe3366(C6xHe3):5C2324,150

Non-split extensions G=N.Q with N=C6xHe3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xHe3).1C2 = C3xC32:C12φ: C2/C1C2 ⊆ Out C6xHe3366(C6xHe3).1C2324,92
(C6xHe3).2C2 = Dic3xHe3φ: C2/C1C2 ⊆ Out C6xHe3366(C6xHe3).2C2324,93
(C6xHe3).3C2 = C33:4C12φ: C2/C1C2 ⊆ Out C6xHe3108(C6xHe3).3C2324,98
(C6xHe3).4C2 = C3xHe3:3C4φ: C2/C1C2 ⊆ Out C6xHe3108(C6xHe3).4C2324,99
(C6xHe3).5C2 = He3:6Dic3φ: C2/C1C2 ⊆ Out C6xHe3366(C6xHe3).5C2324,104
(C6xHe3).6C2 = C12xHe3φ: trivial image108(C6xHe3).6C2324,106

׿
x
:
Z
F
o
wr
Q
<