Copied to
clipboard

G = C2×He34S3order 324 = 22·34

Direct product of C2 and He34S3

direct product, metabelian, supersoluble, monomial

Aliases: C2×He34S3, He39D6, C3310D6, C6⋊(C32⋊C6), (C6×He3)⋊3C2, (C2×He3)⋊4S3, C325(S3×C6), C335(C2×C6), (C32×C6)⋊4C6, (C32×C6)⋊4S3, C33⋊C23C6, (C3×He3)⋊8C22, (C3×C6)⋊3(C3×S3), C6.6(C3×C3⋊S3), C3.2(C6×C3⋊S3), (C3×C6)⋊1(C3⋊S3), C322(C2×C3⋊S3), C32(C2×C32⋊C6), (C2×C33⋊C2)⋊2C3, SmallGroup(324,144)

Series: Derived Chief Lower central Upper central

C1C33 — C2×He34S3
C1C3C32C33C3×He3He34S3 — C2×He34S3
C33 — C2×He34S3
C1C2

Generators and relations for C2×He34S3
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=bc-1, be=eb, fbf=b-1, cd=dc, ce=ec, fcf=c-1, de=ed, df=fd, fef=e-1 >

Subgroups: 988 in 160 conjugacy classes, 38 normal (16 characteristic)
C1, C2, C2, C3, C3, C3, C22, S3, C6, C6, C6, C32, C32, C32, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, He3, He3, C33, C33, S3×C6, C2×C3⋊S3, C32⋊C6, C2×He3, C2×He3, C3×C3⋊S3, C33⋊C2, C32×C6, C32×C6, C3×He3, C2×C32⋊C6, C6×C3⋊S3, C2×C33⋊C2, He34S3, C6×He3, C2×He34S3
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, C3⋊S3, S3×C6, C2×C3⋊S3, C32⋊C6, C3×C3⋊S3, C2×C32⋊C6, C6×C3⋊S3, He34S3, C2×He34S3

Smallest permutation representation of C2×He34S3
On 54 points
Generators in S54
(1 10)(2 9)(3 11)(4 14)(5 13)(6 15)(7 18)(8 17)(12 16)(19 47)(20 48)(21 46)(22 54)(23 52)(24 53)(25 49)(26 50)(27 51)(28 44)(29 45)(30 43)(31 39)(32 37)(33 38)(34 42)(35 40)(36 41)
(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 16 3)(2 18 17)(4 5 6)(7 8 9)(10 12 11)(13 15 14)(19 21 20)(22 24 23)(25 26 27)(28 30 29)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 45 44)(46 48 47)(49 50 51)(52 54 53)
(1 54 35)(2 48 33)(3 52 34)(4 45 26)(5 44 27)(6 43 25)(7 19 39)(8 21 37)(9 20 38)(10 22 40)(11 23 42)(12 24 41)(13 28 51)(14 29 50)(15 30 49)(16 53 36)(17 46 32)(18 47 31)
(1 17 14)(2 13 16)(3 18 15)(4 10 8)(5 12 9)(6 11 7)(19 43 23)(20 44 24)(21 45 22)(25 42 39)(26 40 37)(27 41 38)(28 53 48)(29 54 46)(30 52 47)(31 49 34)(32 50 35)(33 51 36)
(1 2)(3 18)(4 5)(7 11)(8 12)(9 10)(13 14)(16 17)(19 23)(20 22)(21 24)(26 27)(28 29)(31 34)(32 36)(33 35)(37 41)(38 40)(39 42)(44 45)(46 53)(47 52)(48 54)(50 51)

G:=sub<Sym(54)| (1,10)(2,9)(3,11)(4,14)(5,13)(6,15)(7,18)(8,17)(12,16)(19,47)(20,48)(21,46)(22,54)(23,52)(24,53)(25,49)(26,50)(27,51)(28,44)(29,45)(30,43)(31,39)(32,37)(33,38)(34,42)(35,40)(36,41), (19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,16,3)(2,18,17)(4,5,6)(7,8,9)(10,12,11)(13,15,14)(19,21,20)(22,24,23)(25,26,27)(28,30,29)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,45,44)(46,48,47)(49,50,51)(52,54,53), (1,54,35)(2,48,33)(3,52,34)(4,45,26)(5,44,27)(6,43,25)(7,19,39)(8,21,37)(9,20,38)(10,22,40)(11,23,42)(12,24,41)(13,28,51)(14,29,50)(15,30,49)(16,53,36)(17,46,32)(18,47,31), (1,17,14)(2,13,16)(3,18,15)(4,10,8)(5,12,9)(6,11,7)(19,43,23)(20,44,24)(21,45,22)(25,42,39)(26,40,37)(27,41,38)(28,53,48)(29,54,46)(30,52,47)(31,49,34)(32,50,35)(33,51,36), (1,2)(3,18)(4,5)(7,11)(8,12)(9,10)(13,14)(16,17)(19,23)(20,22)(21,24)(26,27)(28,29)(31,34)(32,36)(33,35)(37,41)(38,40)(39,42)(44,45)(46,53)(47,52)(48,54)(50,51)>;

G:=Group( (1,10)(2,9)(3,11)(4,14)(5,13)(6,15)(7,18)(8,17)(12,16)(19,47)(20,48)(21,46)(22,54)(23,52)(24,53)(25,49)(26,50)(27,51)(28,44)(29,45)(30,43)(31,39)(32,37)(33,38)(34,42)(35,40)(36,41), (19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,16,3)(2,18,17)(4,5,6)(7,8,9)(10,12,11)(13,15,14)(19,21,20)(22,24,23)(25,26,27)(28,30,29)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,45,44)(46,48,47)(49,50,51)(52,54,53), (1,54,35)(2,48,33)(3,52,34)(4,45,26)(5,44,27)(6,43,25)(7,19,39)(8,21,37)(9,20,38)(10,22,40)(11,23,42)(12,24,41)(13,28,51)(14,29,50)(15,30,49)(16,53,36)(17,46,32)(18,47,31), (1,17,14)(2,13,16)(3,18,15)(4,10,8)(5,12,9)(6,11,7)(19,43,23)(20,44,24)(21,45,22)(25,42,39)(26,40,37)(27,41,38)(28,53,48)(29,54,46)(30,52,47)(31,49,34)(32,50,35)(33,51,36), (1,2)(3,18)(4,5)(7,11)(8,12)(9,10)(13,14)(16,17)(19,23)(20,22)(21,24)(26,27)(28,29)(31,34)(32,36)(33,35)(37,41)(38,40)(39,42)(44,45)(46,53)(47,52)(48,54)(50,51) );

G=PermutationGroup([[(1,10),(2,9),(3,11),(4,14),(5,13),(6,15),(7,18),(8,17),(12,16),(19,47),(20,48),(21,46),(22,54),(23,52),(24,53),(25,49),(26,50),(27,51),(28,44),(29,45),(30,43),(31,39),(32,37),(33,38),(34,42),(35,40),(36,41)], [(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,16,3),(2,18,17),(4,5,6),(7,8,9),(10,12,11),(13,15,14),(19,21,20),(22,24,23),(25,26,27),(28,30,29),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,45,44),(46,48,47),(49,50,51),(52,54,53)], [(1,54,35),(2,48,33),(3,52,34),(4,45,26),(5,44,27),(6,43,25),(7,19,39),(8,21,37),(9,20,38),(10,22,40),(11,23,42),(12,24,41),(13,28,51),(14,29,50),(15,30,49),(16,53,36),(17,46,32),(18,47,31)], [(1,17,14),(2,13,16),(3,18,15),(4,10,8),(5,12,9),(6,11,7),(19,43,23),(20,44,24),(21,45,22),(25,42,39),(26,40,37),(27,41,38),(28,53,48),(29,54,46),(30,52,47),(31,49,34),(32,50,35),(33,51,36)], [(1,2),(3,18),(4,5),(7,11),(8,12),(9,10),(13,14),(16,17),(19,23),(20,22),(21,24),(26,27),(28,29),(31,34),(32,36),(33,35),(37,41),(38,40),(39,42),(44,45),(46,53),(47,52),(48,54),(50,51)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F3G···3Q6A6B6C6D6E6F6G···6Q6R6S6T6U
order12223333333···36666666···66666
size1127272222336···62222336···627272727

42 irreducible representations

dim11111122222266
type+++++++++
imageC1C2C2C3C6C6S3S3D6D6C3×S3S3×C6C32⋊C6C2×C32⋊C6
kernelC2×He34S3He34S3C6×He3C2×C33⋊C2C33⋊C2C32×C6C2×He3C32×C6He3C33C3×C6C32C6C3
# reps12124231318833

Matrix representation of C2×He34S3 in GL8(ℤ)

-10000000
0-1000000
00100000
00010000
00001000
00000100
00000010
00000001
,
0-1000000
1-1000000
00-110000
00-100000
00000-100
00001-100
00000010
00000001
,
10000000
01000000
000-10000
001-10000
00000-100
00001-100
0000000-1
0000001-1
,
10000000
01000000
00000010
00000001
00100000
00010000
00001000
00000100
,
0-1000000
1-1000000
000-10000
001-10000
00000-100
00001-100
0000000-1
0000001-1
,
01000000
10000000
00-100000
00-110000
0000-1000
0000-1100
000000-10
000000-11

G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,1] >;

C2×He34S3 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes_4S_3
% in TeX

G:=Group("C2xHe3:4S3");
// GroupNames label

G:=SmallGroup(324,144);
// by ID

G=gap.SmallGroup(324,144);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,579,735,2164,7781]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽